Evaluation of taxonomic and neural embedding methods for calculating
semantic similarity
- URL: http://arxiv.org/abs/2209.15197v1
- Date: Fri, 30 Sep 2022 02:54:21 GMT
- Title: Evaluation of taxonomic and neural embedding methods for calculating
semantic similarity
- Authors: Dongqiang Yang, Yanqin Yin
- Abstract summary: We study the mechanisms between taxonomic and distributional similarity measures.
We find that taxonomic similarity measures can depend on the shortest path length as a prime factor to predict semantic similarity.
The synergy of retrofitting neural embeddings with concept relations in similarity prediction may indicate a new trend to leverage knowledge bases on transfer learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modelling semantic similarity plays a fundamental role in lexical semantic
applications. A natural way of calculating semantic similarity is to access
handcrafted semantic networks, but similarity prediction can also be
anticipated in a distributional vector space. Similarity calculation continues
to be a challenging task, even with the latest breakthroughs in deep neural
language models. We first examined popular methodologies in measuring taxonomic
similarity, including edge-counting that solely employs semantic relations in a
taxonomy, as well as the complex methods that estimate concept specificity. We
further extrapolated three weighting factors in modelling taxonomic similarity.
To study the distinct mechanisms between taxonomic and distributional
similarity measures, we ran head-to-head comparisons of each measure with human
similarity judgements from the perspectives of word frequency, polysemy degree
and similarity intensity. Our findings suggest that without fine-tuning the
uniform distance, taxonomic similarity measures can depend on the shortest path
length as a prime factor to predict semantic similarity; in contrast to
distributional semantics, edge-counting is free from sense distribution bias in
use and can measure word similarity both literally and metaphorically; the
synergy of retrofitting neural embeddings with concept relations in similarity
prediction may indicate a new trend to leverage knowledge bases on transfer
learning. It appears that a large gap still exists on computing semantic
similarity among different ranges of word frequency, polysemous degree and
similarity intensity.
Related papers
- Conjuring Semantic Similarity [59.18714889874088]
The semantic similarity between two textual expressions measures the distance between their latent'meaning'
We propose a novel approach whereby the semantic similarity among textual expressions is based not on other expressions they can be rephrased as, but rather based on the imagery they evoke.
Our method contributes a novel perspective on semantic similarity that not only aligns with human-annotated scores, but also opens up new avenues for the evaluation of text-conditioned generative models.
arXiv Detail & Related papers (2024-10-21T18:51:34Z) - Counting Like Human: Anthropoid Crowd Counting on Modeling the
Similarity of Objects [92.80955339180119]
mainstream crowd counting methods regress density map and integrate it to obtain counting results.
Inspired by this, we propose a rational and anthropoid crowd counting framework.
arXiv Detail & Related papers (2022-12-02T07:00:53Z) - Similarity between Units of Natural Language: The Transition from Coarse
to Fine Estimation [0.0]
Capturing the similarities between human language units is crucial for explaining how humans associate different objects.
My research goal in this thesis is to develop regression models that account for similarities between language units in a more refined way.
arXiv Detail & Related papers (2022-10-25T18:54:32Z) - Attributable Visual Similarity Learning [90.69718495533144]
This paper proposes an attributable visual similarity learning (AVSL) framework for a more accurate and explainable similarity measure between images.
Motivated by the human semantic similarity cognition, we propose a generalized similarity learning paradigm to represent the similarity between two images with a graph.
Experiments on the CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate significant improvements over existing deep similarity learning methods.
arXiv Detail & Related papers (2022-03-28T17:35:31Z) - Deconfounded Representation Similarity for Comparison of Neural Networks [16.23053104309891]
Similarity metrics are confounded by the population structure of data items in the input space.
We show that deconfounding the similarity metrics increases the resolution of detecting semantically similar neural networks.
arXiv Detail & Related papers (2022-01-31T21:25:02Z) - MNet-Sim: A Multi-layered Semantic Similarity Network to Evaluate
Sentence Similarity [0.0]
Similarity is a comparative-subjective measure that varies with the domain within which it is considered.
This paper presents a multi-layered semantic similarity network model built upon multiple similarity measures.
It is shown to have demonstrated better performance scores in assessing sentence similarity.
arXiv Detail & Related papers (2021-11-09T20:43:18Z) - Rethinking Crowd Sourcing for Semantic Similarity [0.13999481573773073]
This paper investigates the ambiguities inherent in crowd-sourced semantic labeling.
It shows that annotators that treat semantic similarity as a binary category play the most important role in the labeling.
arXiv Detail & Related papers (2021-09-24T13:57:30Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Exploiting Non-Taxonomic Relations for Measuring Semantic Similarity and
Relatedness in WordNet [0.0]
This paper explores the benefits of using all types of non-taxonomic relations in large linked data, such as WordNet knowledge graph.
We propose a holistic poly-relational approach based on a new relation-based information content and non-taxonomic-based weighted paths.
arXiv Detail & Related papers (2020-06-22T09:59:39Z) - Pairwise Supervision Can Provably Elicit a Decision Boundary [84.58020117487898]
Similarity learning is a problem to elicit useful representations by predicting the relationship between a pair of patterns.
We show that similarity learning is capable of solving binary classification by directly eliciting a decision boundary.
arXiv Detail & Related papers (2020-06-11T05:35:16Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.