Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction
- URL: http://arxiv.org/abs/2209.15245v2
- Date: Tue, 6 Jun 2023 06:27:08 GMT
- Title: Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction
- Authors: Jianyi Zhang, Ang Li, Minxue Tang, Jingwei Sun, Xiang Chen, Fan Zhang,
Changyou Chen, Yiran Chen, Hai Li
- Abstract summary: We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
- Score: 76.26710990597498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to limited communication capacities of edge devices, most existing
federated learning (FL) methods randomly select only a subset of devices to
participate in training for each communication round. Compared with engaging
all the available clients, the random-selection mechanism can lead to
significant performance degradation on non-IID (independent and identically
distributed) data. In this paper, we show our key observation that the
essential reason resulting in such performance degradation is the
class-imbalance of the grouped data from randomly selected clients. Based on
our key observation, we design an efficient heterogeneity-aware client sampling
mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS), which can
effectively reduce class-imbalance of the group dataset from the intentionally
selected clients. In particular, we propose a measure of class-imbalance and
then employ homomorphic encryption to derive this measure in a
privacy-preserving way. Based on this measure, we also design a
computation-efficient client sampling strategy, such that the actively selected
clients will generate a more class-balanced grouped dataset with theoretical
guarantees. Extensive experimental results demonstrate Fed-CBS outperforms the
status quo approaches. Furthermore, it achieves comparable or even better
performance than the ideal setting where all the available clients participate
in the FL training.
Related papers
- Submodular Maximization Approaches for Equitable Client Selection in Federated Learning [4.167345675621377]
In a conventional Learning framework, client selection for training typically involves the random sampling of a subset of clients in each iteration.
This paper introduces two novel methods, namely SUBTRUNC and UNIONFL, designed to address the limitations of random client selection.
arXiv Detail & Related papers (2024-08-24T22:40:31Z) - SFedCA: Credit Assignment-Based Active Client Selection Strategy for Spiking Federated Learning [15.256986486372407]
Spiking federated learning allows resource-constrained devices to train collaboratively at low power consumption without exchanging local data.
Existing spiking federated learning methods employ a random selection approach for client aggregation, assuming unbiased client participation.
We propose a credit assignment-based active client selection strategy, the SFedCA, to judiciously aggregate clients that contribute to the global sample distribution balance.
arXiv Detail & Related papers (2024-06-18T01:56:22Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Federated cINN Clustering for Accurate Clustered Federated Learning [33.72494731516968]
Federated Learning (FL) presents an innovative approach to privacy-preserving distributed machine learning.
We propose the Federated cINN Clustering Algorithm (FCCA) to robustly cluster clients into different groups.
arXiv Detail & Related papers (2023-09-04T10:47:52Z) - Federated Two Stage Decoupling With Adaptive Personalization Layers [5.69361786082969]
Federated learning has gained significant attention due to its ability to enable distributed learning while maintaining privacy constraints.
It inherently experiences significant learning degradation and slow convergence speed.
It is natural to employ the concept of clustering homogeneous clients into the same group, allowing only the model weights within each group to be aggregated.
arXiv Detail & Related papers (2023-08-30T07:46:32Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedABC: Targeting Fair Competition in Personalized Federated Learning [76.9646903596757]
Federated learning aims to collaboratively train models without accessing their client's local private data.
We propose a novel and generic PFL framework termed Federated Averaging via Binary Classification, dubbed FedABC.
In particular, we adopt the one-vs-all'' training strategy in each client to alleviate the unfair competition between classes.
arXiv Detail & Related papers (2023-02-15T03:42:59Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.