Submodular Maximization Approaches for Equitable Client Selection in Federated Learning
- URL: http://arxiv.org/abs/2408.13683v2
- Date: Tue, 27 Aug 2024 19:27:07 GMT
- Title: Submodular Maximization Approaches for Equitable Client Selection in Federated Learning
- Authors: Andrés Catalino Castillo Jiménez, Ege C. Kaya, Lintao Ye, Abolfazl Hashemi,
- Abstract summary: In a conventional Learning framework, client selection for training typically involves the random sampling of a subset of clients in each iteration.
This paper introduces two novel methods, namely SUBTRUNC and UNIONFL, designed to address the limitations of random client selection.
- Score: 4.167345675621377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a conventional Federated Learning framework, client selection for training typically involves the random sampling of a subset of clients in each iteration. However, this random selection often leads to disparate performance among clients, raising concerns regarding fairness, particularly in applications where equitable outcomes are crucial, such as in medical or financial machine learning tasks. This disparity typically becomes more pronounced with the advent of performance-centric client sampling techniques. This paper introduces two novel methods, namely SUBTRUNC and UNIONFL, designed to address the limitations of random client selection. Both approaches utilize submodular function maximization to achieve more balanced models. By modifying the facility location problem, they aim to mitigate the fairness concerns associated with random selection. SUBTRUNC leverages client loss information to diversify solutions, while UNIONFL relies on historical client selection data to ensure a more equitable performance of the final model. Moreover, these algorithms are accompanied by robust theoretical guarantees regarding convergence under reasonable assumptions. The efficacy of these methods is demonstrated through extensive evaluations across heterogeneous scenarios, revealing significant improvements in fairness as measured by a client dissimilarity metric.
Related papers
- Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
We propose a novel client selection strategy designed to emulate the performance achieved with full client participation.
In a single round, we select clients by minimizing the gradient-space estimation error between the client subset and the full client set.
In multi-round selection, we introduce a novel individual fairness constraint, which ensures that clients with similar data distributions have similar frequencies of being selected.
arXiv Detail & Related papers (2024-05-22T12:27:24Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Client Selection in Federated Learning: Principles, Challenges, and
Opportunities [15.33636272844544]
Federated Learning (FL) is a privacy-preserving paradigm for training Machine Learning (ML) models.
In a typical FL scenario, clients exhibit significant heterogeneity in terms of data distribution and hardware configurations.
Various client selection algorithms have been developed, showing promising performance improvement.
arXiv Detail & Related papers (2022-11-03T01:51:14Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns.
This paper proposes a novel weighted client-based clustered FL algorithm to leverage the client's group and each client in a unified optimization framework.
arXiv Detail & Related papers (2022-02-13T02:39:19Z) - Stochastic Client Selection for Federated Learning with Volatile Clients [41.591655430723186]
Federated Learning (FL) is a privacy-preserving machine learning paradigm.
In each round of synchronous FL training, only a fraction of available clients are chosen to participate.
We propose E3CS, a client selection scheme to solve the problem.
arXiv Detail & Related papers (2020-11-17T16:35:24Z) - Client Selection in Federated Learning: Convergence Analysis and
Power-of-Choice Selection Strategies [29.127689561987964]
Federated learning enables a large number of resource-limited client nodes to cooperatively train a model without data sharing.
We show that biasing client selection towards clients with higher local loss achieves faster error convergence.
We propose Power-of-Choice, a communication- and computation-efficient client selection framework.
arXiv Detail & Related papers (2020-10-03T01:04:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.