論文の概要: Machine Unlearning Method Based On Projection Residual
- arxiv url: http://arxiv.org/abs/2209.15276v1
- Date: Fri, 30 Sep 2022 07:29:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 14:41:45.359788
- Title: Machine Unlearning Method Based On Projection Residual
- Title(参考訳): 投影残差に基づく機械学習手法
- Authors: Zihao Cao, Jianzong Wang, Shijing Si, Zhangcheng Huang, Jing Xiao
- Abstract要約: 本稿ではニュートン法に基づく投射残差法を採用する。
主な目的は、線形回帰モデルとニューラルネットワークモデルという文脈で機械学習タスクを実装することである。
実験により, この手法は, モデル再学習に近いデータ削除において, より徹底的な手法であることが確認された。
- 参考スコア(独自算出の注目度): 23.24026891609028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models (mainly neural networks) are used more and more in
real life. Users feed their data to the model for training. But these processes
are often one-way. Once trained, the model remembers the data. Even when data
is removed from the dataset, the effects of these data persist in the model.
With more and more laws and regulations around the world protecting data
privacy, it becomes even more important to make models forget this data
completely through machine unlearning.
This paper adopts the projection residual method based on Newton iteration
method. The main purpose is to implement machine unlearning tasks in the
context of linear regression models and neural network models. This method
mainly uses the iterative weighting method to completely forget the data and
its corresponding influence, and its computational cost is linear in the
feature dimension of the data. This method can improve the current machine
learning method. At the same time, it is independent of the size of the
training set. Results were evaluated by feature injection testing (FIT).
Experiments show that this method is more thorough in deleting data, which is
close to model retraining.
- Abstract(参考訳): 機械学習モデル(主にニューラルネットワーク)は、現実の世界でますます使われている。
ユーザーはトレーニングのためにデータをモデルに供給する。
しかし、これらのプロセスはしばしば一方通行です。
トレーニングが完了すると、モデルはデータを記憶する。
データセットからデータが削除されたとしても、これらのデータの影響はモデルに持続する。
世界中の法律や規制がデータプライバシを保護しているため、モデルに機械学習を通じてこのデータを完全に忘れさせることがますます重要になる。
本稿ではニュートン反復法に基づく投影残差法を採用する。
主な目的は、線形回帰モデルとニューラルネットワークモデルという文脈で機械学習タスクを実装することである。
本手法は主に反復重み付け法を用いてデータとその影響を完全に無視し、その計算コストはデータの特徴次元において線形である。
この方法は、現在の機械学習方法を改善することができる。
同時に、トレーニングセットの大きさとは独立している。
機能注入試験 (FIT) により評価した。
実験により,本手法はモデル再学習に近いデータ削除において,より徹底的であることが示された。
関連論文リスト
- Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
本稿では,事前学習モデルを用いた新しい機械学習手法を提案する。
LoRAを利用して、モデルの中間機能を事前訓練された特徴と残像に分解する。
本手法は,保持集合上のゼロ残差を学習し,未学習集合上でシフト残差を学習することを目的としている。
論文 参考訳(メタデータ) (2024-11-13T08:56:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Machine Unlearning Methodology base on Stochastic Teacher Network [33.763901254862766]
「忘れられる権利」は、データ所有者に、モデルトレーニングに使用したデータを積極的に取り出す権利を与える。
既存の機械学習手法は、ディープラーニングモデルから知識を素早く取り除くのに効果がないことが判明した。
本稿では,ネットワークを教師として利用して,忘れられたデータによる影響の軽減を図ることを提案する。
論文 参考訳(メタデータ) (2023-08-28T06:05:23Z) - Machine Unlearning for Causal Inference [0.6621714555125157]
モデルが与えられたユーザに関する情報(マシンアンラーニング)の学習/取得の一部を忘れることが重要である。
本稿では、因果推論のための機械学習の概念、特に確率スコアマッチングと治療効果推定について紹介する。
この研究で使用されるデータセットは、ジョブトレーニングプログラムの有効性を評価するために広く使用されているデータセットであるLalondeデータセットである。
論文 参考訳(メタデータ) (2023-08-24T17:27:01Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Deep Regression Unlearning [6.884272840652062]
我々は、プライバシー攻撃に対して堅牢な、一般化された深層回帰学習手法を導入する。
我々は、コンピュータビジョン、自然言語処理、予測アプリケーションのための回帰学習実験を行う。
論文 参考訳(メタデータ) (2022-10-15T05:00:20Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - SSSE: Efficiently Erasing Samples from Trained Machine Learning Models [103.43466657962242]
サンプル消去のための効率的かつ効率的なアルゴリズムSSSEを提案する。
ある場合、SSSEは、許可されたデータだけで新しいモデルをスクラッチからトレーニングする最適な、しかし実用的でない金の標準と同様に、サンプルをほぼ消去することができる。
論文 参考訳(メタデータ) (2021-07-08T14:17:24Z) - Approximate Data Deletion from Machine Learning Models [31.689174311625084]
トレーニングされた機械学習(ML)モデルからデータを削除することは、多くのアプリケーションにおいて重要なタスクである。
線形モデルとロジスティックモデルに対する近似的削除法を提案する。
また,MLモデルからのデータ削除の完全性を評価するための機能注入テストも開発した。
論文 参考訳(メタデータ) (2020-02-24T05:12:03Z) - Certified Data Removal from Machine Learning Models [79.91502073022602]
優れたデータスチュワードシップでは、データ所有者の要求でデータを削除する必要がある。
これにより、トレーニングデータに関する情報を暗黙的に格納するトレーニングされた機械学習モデルが、このような削除要求の影響を受けるべきかどうか、という疑問が提起される。
データを削除したモデルと、最初にデータを観測しなかったモデルとを区別できないという非常に強力な理論的保証である。
論文 参考訳(メタデータ) (2019-11-08T03:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。