The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm
- URL: http://arxiv.org/abs/2209.15292v1
- Date: Fri, 30 Sep 2022 08:02:18 GMT
- Title: The Minority Matters: A Diversity-Promoting Collaborative Metric
Learning Algorithm
- Authors: Shilong Bao, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao,
Qingming Huang
- Abstract summary: Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
- Score: 154.47590401735323
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Collaborative Metric Learning (CML) has recently emerged as a popular method
in recommendation systems (RS), closing the gap between metric learning and
Collaborative Filtering. Following the convention of RS, existing methods
exploit unique user representation in their model design. This paper focuses on
a challenging scenario where a user has multiple categories of interests. Under
this setting, we argue that the unique user representation might induce
preference bias, especially when the item category distribution is imbalanced.
To address this issue, we propose a novel method called
\textit{Diversity-Promoting Collaborative Metric Learning} (DPCML), with the
hope of considering the commonly ignored minority interest of the user. The key
idea behind DPCML is to include a multiple set of representations for each user
in the system. Based on this embedding paradigm, user preference toward an item
is aggregated from different embeddings by taking the minimum item-user
distance among the user embedding set. Furthermore, we observe that the
diversity of the embeddings for the same user also plays an essential role in
the model. To this end, we propose a \textit{diversity control regularization}
term to accommodate the multi-vector representation strategy better.
Theoretically, we show that DPCML could generalize well to unseen test data by
tackling the challenge of the annoying operation that comes from the minimum
value. Experiments over a range of benchmark datasets speak to the efficacy of
DPCML.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Improved Diversity-Promoting Collaborative Metric Learning for Recommendation [127.08043409083687]
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems.
This paper focuses on a challenging scenario where a user has multiple categories of interests.
We propose a novel method called textitDiversity-Promoting Collaborative Metric Learning (DPCML)
arXiv Detail & Related papers (2024-09-02T07:44:48Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Sample-Efficient Personalization: Modeling User Parameters as Low Rank
Plus Sparse Components [30.32486162748558]
Personalization of machine learning (ML) predictions for individual users/domains/enterprises is critical for practical recommendation systems.
We propose a novel meta-learning style approach that models network weights as a sum of low-rank and sparse components.
We show that AMHT-LRS solves the problem efficiently with nearly optimal sample complexity.
arXiv Detail & Related papers (2022-10-07T12:50:34Z) - Everyone's Preference Changes Differently: Weighted Multi-Interest
Retrieval Model [18.109035867113217]
Multi-Interest Preference (MIP) model is an approach that produces multi-interest for users by using the user's sequential engagement more effectively.
Extensive experiments have been done on various industrial-scale datasets to demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-14T04:29:54Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
We show that matrix factorization-based collaborative filtering algorithms induce a kind of stereotyping.
If preferences for a textitset of items are anti-correlated in the general user population, then those items may not be recommended together to a user.
We propose an alternative modelling fix, which is designed to capture the diverse multiple interests of each user.
arXiv Detail & Related papers (2021-06-23T18:37:47Z) - Sparse-Interest Network for Sequential Recommendation [78.83064567614656]
We propose a novel textbfSparse textbfInterest textbfNEtwork (SINE) for sequential recommendation.
Our sparse-interest module can adaptively infer a sparse set of concepts for each user from the large concept pool.
SINE can achieve substantial improvement over state-of-the-art methods.
arXiv Detail & Related papers (2021-02-18T11:03:48Z) - Sample-Rank: Weak Multi-Objective Recommendations Using Rejection
Sampling [0.5156484100374059]
We introduce a method involving multi-goal sampling followed by ranking for user-relevance (Sample-Rank) to nudge recommendations towards multi-objective goals of the marketplace.
The proposed method's novelty is that it reduces the MO recommendation problem to sampling from a desired multi-goal distribution then using it to build a production-friendly learning-to-rank model.
arXiv Detail & Related papers (2020-08-24T09:17:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.