論文の概要: Automatic Context-Driven Inference of Engagement in HMI: A Survey
- arxiv url: http://arxiv.org/abs/2209.15370v1
- Date: Fri, 30 Sep 2022 10:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 14:57:12.904331
- Title: Automatic Context-Driven Inference of Engagement in HMI: A Survey
- Title(参考訳): HMIにおけるエンゲージメントの自動文脈駆動推論:サーベイ
- Authors: Hanan Salam, Oya Celiktutan, Hatice Gunes, Mohamed Chetouani
- Abstract要約: 本稿では,人間と機械の相互作用に関するエンゲージメント推論について述べる。
これには、学際的定義、エンゲージメントコンポーネントと要因、公開データセット、地上真実の評価、そして最も一般的に使用される機能と方法が含まれる。
これは、信頼性の高いコンテキスト認識エンゲージメント推論機能を備えた、将来の人間と機械のインタラクションインターフェースの開発のためのガイドとして機能する。
- 参考スコア(独自算出の注目度): 6.479224589451863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An integral part of seamless human-human communication is engagement, the
process by which two or more participants establish, maintain, and end their
perceived connection. Therefore, to develop successful human-centered
human-machine interaction applications, automatic engagement inference is one
of the tasks required to achieve engaging interactions between humans and
machines, and to make machines attuned to their users, hence enhancing user
satisfaction and technology acceptance. Several factors contribute to
engagement state inference, which include the interaction context and
interactants' behaviours and identity. Indeed, engagement is a multi-faceted
and multi-modal construct that requires high accuracy in the analysis and
interpretation of contextual, verbal and non-verbal cues. Thus, the development
of an automated and intelligent system that accomplishes this task has been
proven to be challenging so far. This paper presents a comprehensive survey on
previous work in engagement inference for human-machine interaction, entailing
interdisciplinary definition, engagement components and factors, publicly
available datasets, ground truth assessment, and most commonly used features
and methods, serving as a guide for the development of future human-machine
interaction interfaces with reliable context-aware engagement inference
capability. An in-depth review across embodied and disembodied interaction
modes, and an emphasis on the interaction context of which engagement
perception modules are integrated sets apart the presented survey from existing
surveys.
- Abstract(参考訳): シームレスな人間と人間のコミュニケーションの不可欠な部分はエンゲージメントであり、2人以上の参加者が認識されるつながりを確立し、維持し、終わらせるプロセスである。
したがって、人間中心の人間と機械のインタラクションアプリケーションを成功させるためには、自動エンゲージメント推論は人間と機械間の相互作用を達成し、マシンをユーザに合わせて調整し、ユーザの満足度と技術受容を高めるために必要なタスクの1つである。
いくつかの要因は、相互作用コンテキストや相互作用者の振る舞いやアイデンティティを含むエンゲージメント状態の推論に寄与する。
実際、エンゲージメントは多面的かつマルチモーダルな構造であり、文脈的、言語的、非言語的な手がかりの分析と解釈に高い精度を必要とする。
このように、このタスクを達成する自動化されたインテリジェントなシステムの開発は、これまで難しいことが証明されてきた。
本稿では,従来の人間-機械間相互作用の係り受け推論,学際的定義,係り受け要素と要因,公開データセット,地中真理評価,そして最も一般的に使われている機能や方法に関する総合的な調査を行い,今後の人間-機械間相互作用インターフェースと信頼性のあるコンテキスト対応の係り受け推論機能の開発ガイドとして機能する。
具体的および非身体的相互作用モードにまたがる詳細なレビューと、エンゲージメント認知モジュールが一体化されているインタラクションコンテキストの強調は、既存の調査から得られたサーベイを別々にまとめたものである。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation [39.87346821309096]
本稿では,従来のSOTAと比較して性能が向上したアドレス推定モデルを提案する。
また、上記のアーキテクチャに説明可能性と透明性を組み込むいくつかの方法を提案する。
論文 参考訳(メタデータ) (2024-05-20T13:09:32Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Enabling Harmonious Human-Machine Interaction with Visual-Context
Augmented Dialogue System: A Review [40.49926141538684]
Visual Context Augmented Dialogue System (VAD) は、マルチモーダル情報を知覚し理解することで人間とコミュニケーションする能力を持つ。
VADは、エンゲージメントとコンテキスト対応の応答を生成する可能性を秘めている。
論文 参考訳(メタデータ) (2022-07-02T09:31:37Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
認知科学の研究は、理解が高品質なチャット会話に不可欠なシグナルであることを示唆している。
そこで我々は,P2 Botを提案する。このP2 Botは,理解を明示的にモデル化することを目的とした送信機受信者ベースのフレームワークである。
論文 参考訳(メタデータ) (2020-04-11T12:51:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。