論文の概要: Reliable Face Morphing Attack Detection in On-The-Fly Border Control
Scenario with Variation in Image Resolution and Capture Distance
- arxiv url: http://arxiv.org/abs/2209.15474v1
- Date: Fri, 30 Sep 2022 13:58:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 15:51:08.511587
- Title: Reliable Face Morphing Attack Detection in On-The-Fly Border Control
Scenario with Variation in Image Resolution and Capture Distance
- Title(参考訳): 画像解像度とキャプチャ距離の変化を考慮したオンザフライ境界制御シナリオにおける信頼顔形態検出
- Authors: Jag Mohan Singh, Raghavendra Ramachandra
- Abstract要約: 顔形態形成攻撃は、自動FRSと人間の観察者を欺く上で非常に有益である。
本稿では,深部特徴の球面距離と階層融合に基づく新しい微分MAD(D-MAD)アルゴリズムを提案する。
公開されたSCFaceデータセットに基づいて、新たに生成された顔モーフィングデータセット(SCFace-Morph)で実験を行う。
- 参考スコア(独自算出の注目度): 3.6833521970861685
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face Recognition Systems (FRS) are vulnerable to various attacks performed
directly and indirectly. Among these attacks, face morphing attacks are highly
potential in deceiving automatic FRS and human observers and indicate a severe
security threat, especially in the border control scenario. This work presents
a face morphing attack detection, especially in the On-The-Fly (OTF) Automatic
Border Control (ABC) scenario. We present a novel Differential-MAD (D-MAD)
algorithm based on the spherical interpolation and hierarchical fusion of deep
features computed from six different pre-trained deep Convolutional Neural
Networks (CNNs). Extensive experiments are carried out on the newly generated
face morphing dataset (SCFace-Morph) based on the publicly available SCFace
dataset by considering the real-life scenario of Automatic Border Control (ABC)
gates. Experimental protocols are designed to benchmark the proposed and
state-of-the-art (SOTA) D-MAD techniques for different camera resolutions and
capture distances. Obtained results have indicated the superior performance of
the proposed D-MAD method compared to the existing methods.
- Abstract(参考訳): 顔認識システム(FRS)は、直接間接的に実行される様々な攻撃に対して脆弱である。
これらの攻撃のうち、顔のモーフィング攻撃は自動frsと人間のオブザーバーを欺き、特に国境管理シナリオにおいて深刻なセキュリティの脅威を示す可能性がある。
本研究は,特にOTF(On-The-Fly)自動境界制御(ABC)シナリオにおける顔変形攻撃検出について述べる。
本稿では,6種類の事前学習深部畳み込みニューラルネットワーク(CNN)から計算した球面補間と階層的な深部特徴の融合に基づく新しい微分MADアルゴリズムを提案する。
abcゲート(automatic border control)の実生活シナリオを考慮し,scfaceデータセットに基づく新たな顔形態データセット(scface-morph)について広範な実験を行った。
実験プロトコルは、提案および最先端(SOTA)D-MAD技術を用いて、様々なカメラ解像度と撮影距離をベンチマークするために設計されている。
得られた結果から,提案手法は既存手法に比べて優れた性能を示した。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks [1.1118946307353794]
Face Anti-Spoofing (FAS) は、顔認識技術のセキュリティを維持する上で重要な役割を担っている。
偽造顔生成技術の台頭に伴い、デジタル編集された顔が反偽造に直面する課題がエスカレートしている。
本稿では,データセット上での予測結果を可視化することにより,モデルのトレーニング結果を直感的に反映する可視化手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T03:12:17Z) - Hierarchical Generative Network for Face Morphing Attacks [7.34597796509503]
顔認識システム(FRS)は、複数のアイデンティティを含む形態画像を作成することで、顔認識システム(FRS)を回避している。
本研究では, 画像の品質向上と寄与するアイデンティティの保存を図るため, 新たなモーフィング攻撃法を提案する。
論文 参考訳(メタデータ) (2024-03-17T06:09:27Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Fused Classification For Differential Face Morphing Detection [0.0]
顔モフティング(Face morphing)は、顔認証システムに重大なセキュリティリスクをもたらす。
従来の方法では、複数の顔画像が混在するモルヒネ攻撃を検出するのに苦労している。
非参照シナリオに対する融合分類法に基づく拡張アプローチを提案する。
論文 参考訳(メタデータ) (2023-09-01T16:14:29Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
顔偽造認識法は一度に1つの顔しか処理できない。
ほとんどの顔偽造認識法は一度に1つの顔しか処理できない。
マルチフェイスフォージェリ検出のためのエンドツーエンドフレームワークであるCOMICSを提案する。
論文 参考訳(メタデータ) (2023-08-03T03:37:13Z) - Multispectral Imaging for Differential Face Morphing Attack Detection: A
Preliminary Study [7.681417534211941]
本稿では,D-MAD(D-MAD)のためのマルチスペクトルフレームワークを提案する。
提案したマルチスペクトルD-MADフレームワークは、7つの異なるスペクトルバンドを取得してモーフィング攻撃を検出するために、信頼できるキャプチャとしてキャプチャされたマルチスペクトル画像を導入する。
論文 参考訳(メタデータ) (2023-04-07T07:03:00Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
顔の偽造は生体認証アプリケーションにおけるセキュリティ侵害を防ぐ鍵となる。
RGBと赤外線画像を用いたディープラーニング手法は,新たな攻撃に対する大量のトレーニングデータを必要とする。
本研究では,実顔の偏光画像の物理的特徴を自動的に学習することにより,現実のシナリオにおける顔のアンチ・スプーフィング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T03:04:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。