論文の概要: Graph Neural Networks for Link Prediction with Subgraph Sketching
- arxiv url: http://arxiv.org/abs/2209.15486v1
- Date: Fri, 30 Sep 2022 14:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 16:43:47.509576
- Title: Graph Neural Networks for Link Prediction with Subgraph Sketching
- Title(参考訳): グラフスケッチによるリンク予測のためのグラフニューラルネットワーク
- Authors: Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Ross, Fabrizio
Frasca, Thomas Markovich, Nils Hammerla, Michael M. Bronstein and Max
Hansmire
- Abstract要約: ELPH(Efficient Link Prediction with Hashing)と呼ばれる新しいフルグラフGNNを提案する。
SGNNのキーコンポーネントを明示的なサブグラフ構成なしで近似するために、サブグラフのスケッチをメッセージとして渡す。
多くの標準LPベンチマークで既存のSGNNモデルより優れており、桁違いに高速である。
- 参考スコア(独自算出の注目度): 15.075175480825356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many Graph Neural Networks (GNNs) perform poorly compared to simple
heuristics on Link Prediction (LP) tasks. This is due to limitations in
expressive power such as the inability to count triangles (the backbone of most
LP heuristics) and because they can not distinguish automorphic nodes (those
having identical structural roles). Both expressiveness issues can be
alleviated by learning link (rather than node) representations and
incorporating structural features such as triangle counts. Since explicit link
representations are often prohibitively expensive, recent works resorted to
subgraph-based methods, which have achieved state-of-the-art performance for
LP, but suffer from poor efficiency due to high levels of redundancy between
subgraphs. We analyze the components of subgraph GNN (SGNN) methods for link
prediction. Based on our analysis, we propose a novel full-graph GNN called
ELPH (Efficient Link Prediction with Hashing) that passes subgraph sketches as
messages to approximate the key components of SGNNs without explicit subgraph
construction. ELPH is provably more expressive than Message Passing GNNs
(MPNNs). It outperforms existing SGNN models on many standard LP benchmarks
while being orders of magnitude faster. However, it shares the common GNN
limitation that it is only efficient when the dataset fits in GPU memory.
Accordingly, we develop a highly scalable model, called BUDDY, which uses
feature precomputation to circumvent this limitation without sacrificing
predictive performance. Our experiments show that BUDDY also outperforms SGNNs
on standard LP benchmarks while being highly scalable and faster than ELPH.
- Abstract(参考訳): 多くのグラフニューラルネットワーク(GNN)は、リンク予測(LP)タスクの単純なヒューリスティックスと比較して性能が劣る。
これは、三角形(ほとんどのLPヒューリスティックスのバックボーン)を数えられないことや、正則ノードを区別できないこと(それらが同じ構造的役割を持つ)など、表現力の制限によるものである。
両方の表現性の問題は、(ノードではなく)リンクの表現を学習し、三角数のような構造的特徴を取り入れることで緩和できる。
明示的なリンク表現は、しばしば違法に高価であるため、最近の研究は、LPの最先端性能を達成したサブグラフベースの手法に頼っているが、サブグラフ間の高い冗長性のために効率が悪くなっている。
リンク予測のためのサブグラフGNN(SGNN)手法の構成要素を解析する。
そこで本研究では,sgnnの重要なコンポーネントを明示的なサブグラフ構成なしで近似するために,サブグラフのスケッチをメッセージとして渡す,elph ( efficient link prediction with hashing) と呼ばれる新しいフルグラフgnnを提案する。
ELPHはMessage Passing GNN(MPNN)よりも明らかに表現力が高い。
多くの標準LPベンチマークで既存のSGNNモデルより優れ、桁違いに高速である。
しかし、データセットがGPUメモリに収まる場合にのみ効率が良いという一般的なGNN制限を共有している。
そこで,予測性能を犠牲にすることなく,機能プリ計算を用いてこの制限を回避する,BUDDYと呼ばれる高度にスケーラブルなモデルを開発した。
実験の結果, BUDDYは標準LPベンチマークではSGNNよりも高い性能を示し, ELPHよりも高速かつスケーラブルであることがわかった。
関連論文リスト
- A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening [18.688057947275112]
グラフグラフニューラルネットワーク(サブグラフGNN)は,グラフをサブグラフの集合として表現することで,メッセージパスGNNの表現性を向上する。
以前のアプローチでは、ランダムにまたは学習可能なサンプリングによって選択されたサブグラフのサブセットのみを処理することを提案していた。
本稿では,これらの問題に対処する新しいSubgraph GNNフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T16:29:06Z) - Classifying Nodes in Graphs without GNNs [50.311528896010785]
本稿では,完全GNNフリーなノード分類手法を提案する。
本手法は, 滑らかさ制約, 擬似ラベル反復, 近傍ラベルヒストグラムの3つの主要成分からなる。
論文 参考訳(メタデータ) (2024-02-08T18:59:30Z) - Learning Scalable Structural Representations for Link Prediction with
Bloom Signatures [39.63963077346406]
グラフニューラルネットワーク(GNN)は、リンク予測タスクでサブ最適に実行されることが知られている。
本稿では,Bloomシグネチャを用いたGNNのメッセージパッシングフレームワークを拡張し,構造的リンク表現の学習を提案する。
提案モデルでは,既存のエッジワイドGNNモデルと同等あるいは優れた性能を実現している。
論文 参考訳(メタデータ) (2023-12-28T02:21:40Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
特定の研究の行は、GNNの表現性を向上させるためにサブグラフ情報を使用するサブグラフGNNを提案し、大きな成功を収めた。
このような効果は、すべての可能な部分グラフを列挙することによって、GNNの効率を犠牲にする。
本稿では,強化学習(RL)により強化されたGNNである磁気グラフニューラルネットワーク(MAG-GNN)を提案する。
論文 参考訳(メタデータ) (2023-10-29T20:32:21Z) - Union Subgraph Neural Networks [7.922920885565194]
我々は、新しいタイプのサブ構造から抽出された隣り合う接続情報を注入することで、グラフニューラルネットワーク(GNN)を強化する。
符号化された隣り合う接続性を利用することにより、UnionSNN(Union Subgraph Neural Network)と呼ばれる新しいモデルを提案する。
グラフレベルとノードレベルの両方のタスクに関する18のベンチマークの実験では、UnionSNNが最先端のベースラインモデルより優れていることが示されている。
論文 参考訳(メタデータ) (2023-05-25T05:52:43Z) - LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation [51.552170474958736]
グラフ表現学習においてより効率的なモデルであるLazyGNNを実現するために,より深いモデルではなく,より浅いモデルによってグラフの長距離依存性をキャプチャすることを提案する。
LazyGNNは、ミニバッチのLazyGNNの開発を通じてさらに加速するために、既存のスケーラブルなアプローチ(サンプリング方法など)と互換性がある。
総合的な実験は、大規模なベンチマークで優れた予測性能とスケーラビリティを示す。
論文 参考訳(メタデータ) (2023-02-03T02:33:07Z) - From Stars to Subgraphs: Uplifting Any GNN with Local Structure
Awareness [23.279464786779787]
私たちはMPNNをより表現力のあるものにするための一般的なフレームワークを導入します。
私たちのフレームワークは1&2-WLよりも強力で、3WLよりも強力です。
本手法は,いくつかのよく知られたグラフMLタスクに対して,新たな最先端性能を大きなマージンで設定する。
論文 参考訳(メタデータ) (2021-10-07T19:08:08Z) - GNNAutoScale: Scalable and Expressive Graph Neural Networks via
Historical Embeddings [51.82434518719011]
GNNAutoScale(GAS)は、任意のメッセージパスGNNを大規模グラフにスケールするためのフレームワークである。
ガスは、前回のトレーニングの繰り返しから過去の埋め込みを利用して計算グラフのサブツリー全体を掘り起こします。
ガスは大規模グラフ上で最先端のパフォーマンスに達する。
論文 参考訳(メタデータ) (2021-06-10T09:26:56Z) - Adversarial Permutation Guided Node Representations for Link Prediction [27.31800918961859]
リンク予測(LP)アルゴリズムは、将来新たなエッジが成立する可能性のあるノードペアを特定する。
ほとんどのlpアルゴリズムは、現在不要なノード対のスコアを推定し、このスコアでランク付けする。
本研究では,リカレントで順序に敏感なアグリゲータを用いて隣り合う特徴を集約し,隣り合う順列の逆生成器によって攻撃されるlpロスを直接最小化するpermgnnを提案する。
論文 参考訳(メタデータ) (2020-12-13T03:52:25Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
多くの標準的なトランスダクティブノード分類ベンチマークでは、最先端のGNNの性能を超えたり、一致させることができる。
これをC&S(Correct and Smooth)と呼ぶ。
我々のアプローチは、様々なベンチマークで最先端のGNNの性能を上回るか、ほぼ一致している。
論文 参考訳(メタデータ) (2020-10-27T02:10:52Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。