論文の概要: TT-NF: Tensor Train Neural Fields
- arxiv url: http://arxiv.org/abs/2209.15529v1
- Date: Fri, 30 Sep 2022 15:17:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 14:13:41.337505
- Title: TT-NF: Tensor Train Neural Fields
- Title(参考訳): TT-NF:テンソルトレインニューラルフィールド
- Authors: Anton Obukhov, Mikhail Usvyatsov, Christos Sakaridis, Konrad
Schindler, Luc Van Gool
- Abstract要約: そこで本研究では,Train Neural Fields (TT-NF) と呼ばれる新しい低ランク表現を導入した。
ダウンストリームタスク品質指標に対する低ランク圧縮の影響を解析する。
- 参考スコア(独自算出の注目度): 88.49847274083365
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning neural fields has been an active topic in deep learning research,
focusing, among other issues, on finding more compact and easy-to-fit
representations. In this paper, we introduce a novel low-rank representation
termed Tensor Train Neural Fields (TT-NF) for learning neural fields on dense
regular grids and efficient methods for sampling from them. Our representation
is a TT parameterization of the neural field, trained with backpropagation to
minimize a non-convex objective. We analyze the effect of low-rank compression
on the downstream task quality metrics in two settings. First, we demonstrate
the efficiency of our method in a sandbox task of tensor denoising, which
admits comparison with SVD-based schemes designed to minimize reconstruction
error. Furthermore, we apply the proposed approach to Neural Radiance Fields,
where the low-rank structure of the field corresponding to the best quality can
be discovered only through learning.
- Abstract(参考訳): ニューラルネットワークの学習は、ディープラーニングの研究において活発なトピックであり、よりコンパクトで使いやすい表現を見つけることに焦点を当てている。
本稿では,高密度正則格子上でニューラルネットワークを学習するための新しい低ランク表現テンソルトレインニューラルネットワーク(tt-nf)と,それを用いた効率的なサンプリング手法を提案する。
我々の表現は、非凸目的を最小化するためにバックプロパゲーションで訓練された、ニューラルネットワークのTTパラメータ化である。
ダウンストリームタスク品質指標に対する低ランク圧縮の影響を2つの設定で解析する。
まず,復元誤差を最小限に抑えるように設計されたsvd方式と比較し,テンソル除算のサンドボックスタスクにおいて,本手法の有効性を示す。
さらに、提案手法をニューラルネットワーク分野に適用し、学習を通してのみ最適な品質に対応する分野の低ランク構造を発見できる。
関連論文リスト
- Reg-NF: Efficient Registration of Implicit Surfaces within Neural Fields [6.949522577812908]
本稿では2つの任意のニューラルネットワーク間の相対的な6-DoF変換を最適化するReg-NFについて述べる。
Reg-NFの主な構成要素は、双方向の登録損失、多視点表面サンプリング、および体積符号距離関数の利用である。
論文 参考訳(メタデータ) (2024-02-15T05:31:03Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
運動画像(MI)と運動実行(ME)タスクのためのスパースマルチタスク学習フレームワークを提案する。
MI-ME分類のためのデュアルタスクCNNモデルが与えられた場合、過渡的な接続に対して、サリエンシに基づくスペーシフィケーションアプローチを適用する。
以上の結果から, この調整された疎水性は, 過度に適合する問題を緩和し, 少ないデータ量でテスト性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T09:06:16Z) - Hopfield-Enhanced Deep Neural Networks for Artifact-Resilient Brain
State Decoding [0.0]
そこで本研究では, ホップフィールド・ネットワークとコナール・ニューラル・ネットワーク(CNN)を併用した2段階の計算手法を提案する。
様々なレベルのデータ圧縮とノイズ強度のパフォーマンスは、我々のフレームワークがアーティファクトを効果的に軽減し、より低いノイズレベルにおいてクリーンなデータCNNと同等の精度でモデルに到達できることを示しました。
論文 参考訳(メタデータ) (2023-11-06T15:08:13Z) - Neural Modulation Fields for Conditional Cone Beam Neural Tomography [18.721488634071193]
コーンビーム・ニューラル・トモグラフィ(CondCBNT)は、ノイズフリーおよびノイズの多いデータに対して、高値および低値のプロジェクションの性能向上を示す。
ニューラル変調場(NMF)を介して入力領域上のフィールドとして局所変調をモデル化する新しい条件付け法を提案する。
論文 参考訳(メタデータ) (2023-07-17T09:41:01Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Training neural network ensembles via trajectory sampling [0.0]
機械学習では、ニューラルネットワークアンサンブル(NNE)に新たな関心がある
システムにおける希少な軌跡の研究を用いて,NNEの定義と訓練方法を示す。
簡単な教師付き学習課題に対して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-09-22T15:59:33Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。