論文の概要: EAPruning: Evolutionary Pruning for Vision Transformers and CNNs
- arxiv url: http://arxiv.org/abs/2210.00181v1
- Date: Sat, 1 Oct 2022 03:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 15:15:13.568742
- Title: EAPruning: Evolutionary Pruning for Vision Transformers and CNNs
- Title(参考訳): EAPruning: ビジョントランスフォーマーとCNNのための進化的プルーニング
- Authors: Qingyuan Li, Bo Zhang, Xiangxiang Chu
- Abstract要約: 我々は、視覚変換器と畳み込みニューラルネットワークの両方に容易に適用可能な、シンプルで効果的なアプローチを採っている。
ResNet50とMobileNetV1の50%のFLOPS削減を実現し,それぞれ1.37倍,1.34倍の高速化を実現した。
- 参考スコア(独自算出の注目度): 11.994217333212736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured pruning greatly eases the deployment of large neural networks in
resource-constrained environments. However, current methods either involve
strong domain expertise, require extra hyperparameter tuning, or are restricted
only to a specific type of network, which prevents pervasive industrial
applications. In this paper, we undertake a simple and effective approach that
can be easily applied to both vision transformers and convolutional neural
networks. Specifically, we consider pruning as an evolution process of
sub-network structures that inherit weights through reconstruction techniques.
We achieve a 50% FLOPS reduction for ResNet50 and MobileNetV1, leading to 1.37x
and 1.34x speedup respectively. For DeiT-Base, we reach nearly 40% FLOPs
reduction and 1.4x speedup. Our code will be made available.
- Abstract(参考訳): 構造化プルーニングは、リソース制約された環境における大規模ニューラルネットワークの展開を大幅に緩和する。
しかし、現在の手法では、強力なドメイン専門知識を必要とするか、追加のハイパーパラメータチューニングを必要とするか、特定のタイプのネットワークに限定されている。
本稿では,視覚変換器と畳み込みニューラルネットワークの両方に容易に適用可能な,シンプルで効果的なアプローチを提案する。
具体的には,再建技術によって重みを継承するサブネットワーク構造の進化過程として,プルーニングを考察する。
ResNet50とMobileNetV1の50%のFLOPS削減を実現し,それぞれ1.37倍,1.34倍の高速化を実現した。
DeiT-Baseでは、約40%のFLOP削減と1.4倍のスピードアップを実現しています。
私たちのコードは利用可能になります。
関連論文リスト
- Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Pruning Very Deep Neural Network Channels for Efficient Inference [6.497816402045099]
トレーニングされたCNNモデルを用いて,各層を効果的にプルーする反復的2段階アルゴリズムを提案する。
VGG-16は5倍のスピードアップを実現し、エラーはわずか0.3%増加した。
提案手法は,ResNet,Xceptionなどの現代のネットワークを高速化し,それぞれ2倍のスピードアップで1.4%,1.0%の精度損失を被る。
論文 参考訳(メタデータ) (2022-11-14T06:48:33Z) - CHEX: CHannel EXploration for CNN Model Compression [47.3520447163165]
本稿では,これらの問題を是正するために,CHEXと呼ばれる新しいチャネル探索手法を提案する。
CheXはトレーニングプロセスを通じてチャネルを繰り返しプーンして再成長させ、重要なチャネルを早期にプルーニングするリスクを低減させる。
CHEXは様々なコンピュータビジョンタスクにおいて,多様なCNNアーキテクチャのFLOPを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2022-03-29T17:52:41Z) - FQ-ViT: Fully Quantized Vision Transformer without Retraining [13.82845665713633]
本稿では,量子変換器の性能劣化と推論の複雑さを低減するための系統的手法を提案する。
完全に量子化された視覚変換器上で、我々は初めて精度の劣化(1%)を達成した。
論文 参考訳(メタデータ) (2021-11-27T06:20:53Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Layer Folding: Neural Network Depth Reduction using Activation
Linearization [0.0]
現代のデバイスは高いレベルの並列性を示すが、リアルタイムレイテンシはネットワークの深さに大きく依存している。
線形でない活性化を除去できるかどうかを学習し、連続的な線形層を1つに折り畳む方法を提案する。
我々は, CIFAR-10 と CIFAR-100 で事前訓練されたネットワークに適用し, それら全てを同様の深さの浅い形に変換できることを示す。
論文 参考訳(メタデータ) (2021-06-17T08:22:46Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Container: Context Aggregation Network [83.12004501984043]
最近の発見は、従来の畳み込みやトランスフォーマーコンポーネントを使わずに、シンプルなベースのソリューションが効果的な視覚表現を生成できることを示している。
マルチヘッドコンテキストアグリゲーションのための汎用ビルディングブロックCONText Ion NERtwokを提案する。
より大規模な入力画像解像度に依存する下流タスクにはスケールしないTransformerベースの手法とは対照的に、当社の効率的なネットワークであるModellightは、オブジェクト検出やインスタンスセグメンテーションネットワークに利用することができる。
論文 参考訳(メタデータ) (2021-06-02T18:09:11Z) - IC Networks: Remodeling the Basic Unit for Convolutional Neural Networks [8.218732270970381]
既存のCNNにIC構造を組み込んで性能を向上することができる。
ICネットワークのトレーニングを高速化するために,新しいトレーニング手法,すなわち弱いロジット蒸留(WLD)を提案する。
ImageNetの実験では、IC構造をResNet-50に統合し、トップ1エラーを22.38%から21.75%に削減した。
論文 参考訳(メタデータ) (2021-02-06T03:15:43Z) - MicroNet: Towards Image Recognition with Extremely Low FLOPs [117.96848315180407]
MicroNetは計算コストの極めて低い効率的な畳み込みニューラルネットワークである。
MicroNetのファミリは、低いFLOP体制における最先端技術よりも大きなパフォーマンス向上を実現している。
例えば、MicroNet-M1は12のMFLOPを持つImageNet分類において61.1%のトップ-1の精度を達成し、MobileNetV3を11.3%上回っている。
論文 参考訳(メタデータ) (2020-11-24T18:59:39Z) - Rapid Structural Pruning of Neural Networks with Set-based Task-Adaptive
Meta-Pruning [83.59005356327103]
既存のプルーニング技術に共通する制限は、プルーニングの前に少なくとも1回はネットワークの事前トレーニングが必要であることである。
本稿では,ターゲットデータセットの関数としてプルーニングマスクを生成することにより,大規模な参照データセット上で事前訓練されたネットワークをタスク適応的にプルークするSTAMPを提案する。
ベンチマークデータセット上での最近の先進的なプルーニング手法に対するSTAMPの有効性を検証する。
論文 参考訳(メタデータ) (2020-06-22T10:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。