論文の概要: Grouped self-attention mechanism for a memory-efficient Transformer
- arxiv url: http://arxiv.org/abs/2210.00440v2
- Date: Thu, 6 Oct 2022 09:11:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 14:49:12.530434
- Title: Grouped self-attention mechanism for a memory-efficient Transformer
- Title(参考訳): メモリ効率変換器の群自己保持機構
- Authors: Bumjun Jung, Yusuke Mukuta, Tatsuya Harada
- Abstract要約: 天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
- 参考スコア(独自算出の注目度): 64.0125322353281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series data analysis is important because numerous real-world tasks such
as forecasting weather, electricity consumption, and stock market involve
predicting data that vary over time. Time-series data are generally recorded
over a long period of observation with long sequences owing to their periodic
characteristics and long-range dependencies over time. Thus, capturing
long-range dependency is an important factor in time-series data forecasting.
To solve these problems, we proposed two novel modules, Grouped Self-Attention
(GSA) and Compressed Cross-Attention (CCA). With both modules, we achieved a
computational space and time complexity of order $O(l)$ with a sequence length
$l$ under small hyperparameter limitations, and can capture locality while
considering global information. The results of experiments conducted on
time-series datasets show that our proposed model efficiently exhibited reduced
computational complexity and performance comparable to or better than existing
methods.
- Abstract(参考訳): 時系列データ分析は、天気予報、電力消費、株式市場といった現実世界の多くのタスクが、時間とともに変化するデータの予測に関わるため重要である。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
したがって、時系列データ予測において、長距離依存性を捉えることが重要な要素である。
これらの問題を解決するために,GSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)という2つの新しいモジュールを提案した。
どちらのモジュールも計算空間と時間複雑性を達成し、小さなハイパーパラメータの制限下でのシーケンス長$l$ のオーダー $o(l)$ を達成し、グローバル情報を考慮しながら局所性をキャプチャできる。
時系列データセットを用いた実験の結果,提案モデルでは,既存の手法に匹敵する計算複雑性と性能の低減が効果的に示された。
関連論文リスト
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
我々は時系列の統一予測のための生成変換器Timer-XLを提案する。
Timer-XLは、統一されたアプローチにより、挑戦的な予測ベンチマークで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-07T07:27:39Z) - TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting [49.6208017412376]
TimeBridgeは、非定常性と依存性モデリングの間のギャップを埋めるために設計された新しいフレームワークである。
TimeBridgeは、短期予測と長期予測の両方において、最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2024-10-06T10:41:03Z) - MixLinear: Extreme Low Resource Multivariate Time Series Forecasting with 0.1K Parameters [6.733646592789575]
時系列予測(LTSF)は、パターンや傾向を特定するために、大量の時系列データを分析することによって、長期的な価値を予測する。
トランスフォーマーベースのモデルは高い予測精度を提供するが、ハードウェア制約のあるデバイスにデプロイするには計算集約的すぎることが多い。
資源制約のあるデバイスに特化して設計された超軽量時系列予測モデルであるMixLinearを提案する。
論文 参考訳(メタデータ) (2024-10-02T23:04:57Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
テストタイムトレーニング(TTT)モジュールは、MambaベースのTimeMachineなど、最先端モデルよりも一貫して優れている。
その結果,平均二乗誤差 (MSE) と平均絶対誤差 (MAE) に有意な改善が認められた。
この研究は、時系列予測の新しいベンチマークを設定し、スケーラブルで高性能な予測モデルにおける将来の研究の基礎を定めている。
論文 参考訳(メタデータ) (2024-09-21T04:40:08Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
本稿では,時系列間の相関を利用して時系列間の構造を学習し,精度の高い正確な予測を行うSTOICを紹介する。
幅広いベンチマークデータセットに対して、STOICは16%の精度とキャリブレーションのよい予測を提供する。
論文 参考訳(メタデータ) (2024-07-02T20:14:32Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - GinAR: An End-To-End Multivariate Time Series Forecasting Model Suitable for Variable Missing [21.980379175333443]
本稿では,グラフ補間注意再帰ネットワーク(GinAR)を提案する。
GinARでは、2つの重要なコンポーネント、すなわち注意と適応グラフの畳み込みで構成されている。
5つの実世界のデータセットで実施された実験では、GinARは11のSOTAベースラインより優れており、90%の変数が欠落している場合でも、すべての変数の将来の値を正確に予測できる。
論文 参考訳(メタデータ) (2024-05-18T16:42:44Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。