Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy
Analysis on OCTA Images
- URL: http://arxiv.org/abs/2210.00515v1
- Date: Sun, 2 Oct 2022 13:23:56 GMT
- Title: Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy
Analysis on OCTA Images
- Authors: Junlin Hou, Fan Xiao, Jilan Xu, Yuejie Zhang, Haidong Zou, Rui Feng
- Abstract summary: We present novel and practical deep-learning solutions based on ultra-wide OCTA for the Diabetic Retinopathy Analysis Challenge (DRAC)
In the segmentation of DR lesions task, we utilize UNet and UNet++ to segment three lesions with strong data augmentation and model ensemble.
In the image quality assessment task, we create an ensemble of InceptionV3, SE-ResNeXt, and Vision Transformer models.
- Score: 10.16138081361263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ultra-wide optical coherence tomography angiography (OCTA) has become an
important imaging modality in diabetic retinopathy (DR) diagnosis. However,
there are few researches focusing on automatic DR analysis using ultra-wide
OCTA. In this paper, we present novel and practical deep-learning solutions
based on ultra-wide OCTA for the Diabetic Retinopathy Analysis Challenge
(DRAC). In the segmentation of DR lesions task, we utilize UNet and UNet++ to
segment three lesions with strong data augmentation and model ensemble. In the
image quality assessment task, we create an ensemble of InceptionV3,
SE-ResNeXt, and Vision Transformer models. Pre-training on the large dataset as
well as the hybrid MixUp and CutMix strategy are both adopted to boost the
generalization ability of our model. In the DR grading task, we build a Vision
Transformer (ViT) and fnd that the ViT model pre-trained on color fundus images
serves as a useful substrate for OCTA images. Our proposed methods ranked 4th,
3rd, and 5th on the three leaderboards of DRAC, respectively. The source code
will be made available at https://github.com/FDU-VTS/DRAC.
Related papers
- SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Improved Automatic Diabetic Retinopathy Severity Classification Using
Deep Multimodal Fusion of UWF-CFP and OCTA Images [1.6449510885987357]
Diabetic Retinopathy (DR), a prevalent and severe complication of diabetes, affects millions of individuals globally.
Recent advancements in imaging technologies provide opportunities for the early detection of DR but also pose significant challenges.
This study introduces a novel multimodal approach that leverages these imaging modalities to notably enhance DR classification.
arXiv Detail & Related papers (2023-10-03T09:35:38Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - Detecting Severity of Diabetic Retinopathy from Fundus Images: A Transformer Network-based Review [1.3217592635033124]
Diabetic Retinopathy (DR) is considered one of the significant concerns worldwide.
This paper deals with an automated understanding of the severity stages of DR.
We adopt and fine-tune transformer-based learning models to capture the crucial features of retinal images.
arXiv Detail & Related papers (2023-01-03T07:05:38Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - Segmentation, Classification, and Quality Assessment of UW-OCTA Images
for the Diagnosis of Diabetic Retinopathy [2.435307010444828]
Diabetic Retinopathy (DR) is a severe complication of diabetes that can cause blindness.
In this paper, we will present our solutions for the three tasks of the Diabetic Retinopathy Analysis Challenge 2022 (DRAC22)
The obtained results are promising and have allowed us to position ourselves in the TOP 5 of the segmentation task.
arXiv Detail & Related papers (2022-11-21T14:49:18Z) - Automated analysis of diabetic retinopathy using vessel segmentation
maps as inductive bias [6.667329719331044]
Early stages of diabetic retinopathy can be diagnosed by monitoring vascular changes in the deep vascular complex.
In this work, we investigate a novel method for automated DR grading based on optical coherence tomography angiography ( OCTA) images.
arXiv Detail & Related papers (2022-10-28T10:58:53Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
We will present and discuss opportunities and challenges brought by a new deep learning method by AUC (aka underlinebf Deep underlinebf AUC classification)
arXiv Detail & Related papers (2021-11-01T15:31:32Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.