Automated analysis of diabetic retinopathy using vessel segmentation
maps as inductive bias
- URL: http://arxiv.org/abs/2210.16053v1
- Date: Fri, 28 Oct 2022 10:58:53 GMT
- Title: Automated analysis of diabetic retinopathy using vessel segmentation
maps as inductive bias
- Authors: Linus Kreitner, Ivan Ezhov, Daniel Rueckert, Johannes C. Paetzold, and
Martin J. Menten
- Abstract summary: Early stages of diabetic retinopathy can be diagnosed by monitoring vascular changes in the deep vascular complex.
In this work, we investigate a novel method for automated DR grading based on optical coherence tomography angiography ( OCTA) images.
- Score: 6.667329719331044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies suggest that early stages of diabetic retinopathy (DR) can be
diagnosed by monitoring vascular changes in the deep vascular complex. In this
work, we investigate a novel method for automated DR grading based on optical
coherence tomography angiography (OCTA) images. Our work combines OCTA scans
with their vessel segmentations, which then serve as inputs to task specific
networks for lesion segmentation, image quality assessment and DR grading. For
this, we generate synthetic OCTA images to train a segmentation network that
can be directly applied on real OCTA data. We test our approach on MICCAI
2022's DR analysis challenge (DRAC). In our experiments, the proposed method
performs equally well as the baseline model.
Related papers
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Improving Classification of Retinal Fundus Image Using Flow Dynamics
Optimized Deep Learning Methods [0.0]
Diabetic Retinopathy (DR) refers to a barrier that takes place in diabetes mellitus damaging the blood vessel network present in the retina.
It can take some time to perform a DR diagnosis using color fundus pictures because experienced clinicians are required to identify the tumors in the imagery used to identify the illness.
arXiv Detail & Related papers (2023-04-29T16:11:34Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
We organized a challenge named "DRAC - Diabetic Retinopathy Analysis Challenge" in conjunction with the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)
The challenge consists of three tasks: segmentation of DR lesions, image quality assessment and DR grading.
This paper presents a summary and analysis of the top-performing solutions and results for each task of the challenge.
arXiv Detail & Related papers (2023-04-05T12:04:55Z) - An Ensemble Method to Automatically Grade Diabetic Retinopathy with
Optical Coherence Tomography Angiography Images [4.640835690336653]
We propose an ensemble method to automatically grade Diabetic retinopathy (DR) images available from Diabetic Retinopathy Analysis Challenge (DRAC) 2022.
First, we adopt the state-of-the-art classification networks, and train them to grade UW- OCTA images with different splits of the available dataset.
Ultimately, we obtain 25 models, of which, the top 16 models are selected and ensembled to generate the final predictions.
arXiv Detail & Related papers (2022-12-12T22:06:47Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
We present a study for diabetic retinopathy (DR) analysis tasks, including lesion segmentation, image quality assessment, and DR grading.
For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning.
We propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model's confidence scores to reduce the negative effect of noisy pseudo-labels.
arXiv Detail & Related papers (2022-10-18T03:25:00Z) - Deep-OCTA: Ensemble Deep Learning Approaches for Diabetic Retinopathy
Analysis on OCTA Images [10.16138081361263]
We present novel and practical deep-learning solutions based on ultra-wide OCTA for the Diabetic Retinopathy Analysis Challenge (DRAC)
In the segmentation of DR lesions task, we utilize UNet and UNet++ to segment three lesions with strong data augmentation and model ensemble.
In the image quality assessment task, we create an ensemble of InceptionV3, SE-ResNeXt, and Vision Transformer models.
arXiv Detail & Related papers (2022-10-02T13:23:56Z) - RAVIR: A Dataset and Methodology for the Semantic Segmentation and
Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance
Imaging [7.316426736150123]
We present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging.
We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins.
Our experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models.
arXiv Detail & Related papers (2022-03-28T17:30:29Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.