論文の概要: EraseNet: A Recurrent Residual Network for Supervised Document Cleaning
- arxiv url: http://arxiv.org/abs/2210.00708v1
- Date: Mon, 3 Oct 2022 04:23:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 14:50:45.672687
- Title: EraseNet: A Recurrent Residual Network for Supervised Document Cleaning
- Title(参考訳): erasenet: 教師付き文書クリーニングのための再帰的残差ネットワーク
- Authors: Yashowardhan Shinde, Kishore Kulkarni
- Abstract要約: 本稿では, 完全畳み込み型自動エンコーダアーキテクチャを用いて, 汚れた文書のクリーニングを指導する手法を提案する。
本実験では, モデルが各種の常用音や異常音を学習し, 効率よく修正できるので, 有望な結果が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Document denoising is considered one of the most challenging tasks in
computer vision. There exist millions of documents that are still to be
digitized, but problems like document degradation due to natural and man-made
factors make this task very difficult. This paper introduces a supervised
approach for cleaning dirty documents using a new fully convolutional
auto-encoder architecture. This paper focuses on restoring documents with
discrepancies like deformities caused due to aging of a document, creases left
on the pages that were xeroxed, random black patches, lightly visible text,
etc., and also improving the quality of the image for better optical character
recognition system (OCR) performance. Removing noise from scanned documents is
a very important step before the documents as this noise can severely affect
the performance of an OCR system. The experiments in this paper have shown
promising results as the model is able to learn a variety of ordinary as well
as unusual noises and rectify them efficiently.
- Abstract(参考訳): ドキュメンテーションはコンピュータビジョンにおいて最も困難なタスクの1つである。
デジタル化される文書は何百万もあるが、自然や人為的な要因による文書の劣化などの問題により、この作業は非常に困難である。
本稿では, 完全畳み込み型自動エンコーダアーキテクチャを用いて, 汚れた文書のクリーニングを指導する手法を提案する。
本稿では,文書の老朽化による変形,xeroxed したページに残されている裂け目,無作為な黒パッチ,明るい可視テキストなど,異質な文書の復元と,光学文字認識システム (ocr) の性能向上のための画像品質の向上に焦点を当てた。
スキャンした文書からノイズを取り除くことは、このノイズがOCRシステムの性能に悪影響を及ぼす可能性があるため、文書の前の非常に重要なステップである。
本実験では, モデルが各種の常用音や異常音を学習し, 効率よく修正できるので, 有望な結果が得られた。
関連論文リスト
- DocMAE: Document Image Rectification via Self-supervised Representation
Learning [144.44748607192147]
文書画像修正のための新しい自己教師型フレームワークDocMAEを提案する。
まず、背景を除いた文書画像のランダムなパッチをマスクし、欠落したピクセルを再構成する。
このような自己教師型学習手法により、ネットワークは変形文書の本質的な構造を学習することが奨励される。
論文 参考訳(メタデータ) (2023-04-20T14:27:15Z) - Deep Unrestricted Document Image Rectification [110.61517455253308]
文書画像修正のための新しい統合フレームワークDocTr++を提案する。
我々は,階層型エンコーダデコーダ構造を多スケール表現抽出・解析に適用することにより,元のアーキテクチャをアップグレードする。
実際のテストセットとメトリクスをコントリビュートして、修正品質を評価します。
論文 参考訳(メタデータ) (2023-04-18T08:00:54Z) - ShabbyPages: A Reproducible Document Denoising and Binarization Dataset [59.457999432618614]
ShabbyPagesは新しいドキュメントイメージデータセットである。
本稿では,ShabbyPagesの作成プロセスについて議論し,人間の知覚力の高い実雑音の特徴を除去する畳み込みデノイザの訓練によるShabbyPagesの有用性を実証する。
論文 参考訳(メタデータ) (2023-03-16T14:19:50Z) - Detection Masking for Improved OCR on Noisy Documents [8.137198664755596]
本稿では,文書上でのOCRの品質向上を目的として,マスキングシステムによる検出ネットワークの改良について述べる。
本手法の有用性と適用性を示すために,公開データセット上で統一的な評価を行う。
論文 参考訳(メタデータ) (2022-05-17T11:59:18Z) - Fourier Document Restoration for Robust Document Dewarping and
Recognition [73.44057202891011]
本稿では、異なる歪みで文書を復元できるフーリエ文書復元ネットワークであるFDRNetについて述べる。
ドキュメントをフレキシブルなThin-Plate Spline変換でデワープし、トレーニング時に変形アノテーションを必要とせずに、様々な変形を効果的に処理できる。
これは、デウォープとテキスト認識の両方のタスクにおいて、最先端の技術をはるかに上回る。
論文 参考訳(メタデータ) (2022-03-18T12:39:31Z) - A Survey on Deep learning based Document Image Enhancement [5.279475826661643]
現在では、科学論文、税形式、請求書、契約書、歴史文書などのデジタル化された文書が広く使われている。
これらの画像は、撮影時の照明条件の悪さ、スキャン中の影、ノイズやぼやけなどの歪み、老朽化、インクの汚れ、通気、透かし、切手など、様々な理由で劣化または損傷する可能性がある。
近年のディープラーニングの進歩により,これらの文書画像の品質向上のために,多くの手法が提案されている。
論文 参考訳(メタデータ) (2021-12-06T00:24:50Z) - DocScanner: Robust Document Image Rectification with Progressive
Learning [162.03694280524084]
この研究はDocScannerという、文書画像の修正のための新しいディープネットワークアーキテクチャを提示する。
DocScannerは、修正されたイメージの1つの見積を維持し、再帰的なアーキテクチャで徐々に修正される。
反復的な改善によりDocScannerは堅牢で優れたパフォーマンスに収束し、軽量なリカレントアーキテクチャにより実行効率が保証される。
論文 参考訳(メタデータ) (2021-10-28T09:15:02Z) - Enhance to Read Better: An Improved Generative Adversarial Network for
Handwritten Document Image Enhancement [1.7491858164568674]
本稿では,GAN(Generative Adversarial Networks)に基づくエンド・ツー・エンドアーキテクチャを提案する。
私たちの知る限りでは、これは手書き文書をバイナライズしながらテキスト情報を使用する最初の作業である。
H-DIBCO 2018の課題では、人工的に劣化したラテン手書き画像でトレーニング済みのモデルを微調整した後、アートの状況よりも優れています。
論文 参考訳(メタデータ) (2021-05-26T17:44:45Z) - End-to-End Unsupervised Document Image Blind Denoising [0.8717253904965373]
本稿では,複数種類のノイズを効果的に除去できる,エンドツーエンドの教師なしディープラーニングモデルを初めて提案する。
提案手法は,複数のテストデータセット上でスキャンした画像の品質とページのOCRを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-05-19T23:55:15Z) - DE-GAN: A Conditional Generative Adversarial Network for Document
Enhancement [4.073826298938431]
本稿では,高度に劣化した文書イメージを復元するために,文書拡張生成適応ネットワーク(DE-GAN)と呼ばれるエンドツーエンドのフレームワークを提案する。
異なるタスク(文書のクリーンアップ、ビナライゼーション、デブロアリング、透かし除去)において、DE-GANは劣化した文書を高品質に拡張できることを示した。
論文 参考訳(メタデータ) (2020-10-17T10:54:49Z) - Self-supervised Deep Reconstruction of Mixed Strip-shredded Text
Documents [63.41717168981103]
本研究は,従来の1ページ再構成の深層学習手法を,より現実的で複雑なシナリオに拡張する。
本手法では, 整合性評価を2クラス(無効または無効)パターン認識問題としてモデル化する。
提案手法は複雑なシナリオにおいて競合する手法よりも優れ、90%以上の精度で精度が向上する。
論文 参考訳(メタデータ) (2020-07-01T21:48:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。