論文の概要: Merging Classification Predictions with Sequential Information for
Lightweight Visual Place Recognition in Changing Environments
- arxiv url: http://arxiv.org/abs/2210.00834v1
- Date: Mon, 3 Oct 2022 11:42:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-04 15:53:12.264300
- Title: Merging Classification Predictions with Sequential Information for
Lightweight Visual Place Recognition in Changing Environments
- Title(参考訳): 変化する環境における視覚的位置認識のための系列情報を用いたマージ分類予測
- Authors: Bruno Arcanjo, Bruno Ferrarini, Michael Milford, Klaus D.
McDonald-Maier and Shoaib Ehsan
- Abstract要約: 低オーバーヘッド視覚的位置認識(VPR)は、非常に活発な研究トピックである。
モバイルロボティクスアプリケーションはローエンドのハードウェアの下で運用されることが多く、さらにハードウェア対応のシステムは、他のナビゲーションタスクのためにオンボードシステムリソースを解放することの恩恵を受けることができる。
この研究は、バイナリ重み付き分類器ネットワークと1次元畳み込みネットワークを組み合わせた新しいシステムの提案により、軽量なVPRに対処する。
- 参考スコア(独自算出の注目度): 22.58641358408613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-overhead visual place recognition (VPR) is a highly active research
topic. Mobile robotics applications often operate under low-end hardware, and
even more hardware capable systems can still benefit from freeing up onboard
system resources for other navigation tasks. This work addresses lightweight
VPR by proposing a novel system based on the combination of binary-weighted
classifier networks with a one-dimensional convolutional network, dubbed
merger. Recent work in fusing multiple VPR techniques has mainly focused on
increasing VPR performance, with computational efficiency not being highly
prioritized. In contrast, we design our technique prioritizing low inference
times, taking inspiration from the machine learning literature where the
efficient combination of classifiers is a heavily researched topic. Our
experiments show that the merger achieves inference times as low as 1
millisecond, being significantly faster than other well-established lightweight
VPR techniques, while achieving comparable or superior VPR performance on
several visual changes such as seasonal variations and viewpoint lateral
shifts.
- Abstract(参考訳): 視覚的位置認識(VPR)は、非常に活発な研究課題である。
モバイルロボティクスアプリケーションはローエンドのハードウェアで動作し、さらに多くのハードウェア能力のあるシステムは、他のナビゲーションタスクのためのオンボードシステムリソースを解放することで恩恵を受けることができる。
この研究は、バイナリ重み付き分類器ネットワークと1次元畳み込みネットワークを組み合わせた新しいシステムの提案により、軽量なVPRに対処する。
複数のVPR技術を融合する最近の研究は、主にVPRの性能向上に重点を置いている。
対照的に,分類器の効率的な組み合わせが研究対象となっている機械学習文献からインスピレーションを得て,推論時間の低さを優先する手法を設計する。
実験の結果, 予測時間は1ミリ秒以下であり, 従来の軽量VPR技術よりもはるかに高速であり, 季節変動や視点側シフトなどの視覚的変化に対して, 同等あるいは優れたVPR性能を実現することができた。
関連論文リスト
- Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
本稿では,変換器を用いたディープホモグラフィー推定(DHE)ネットワークを提案する。
バックボーンネットワークによって抽出された濃密な特徴写像を入力とし、高速で学習可能な幾何的検証のためにホモグラフィーに適合する。
ベンチマークデータセットを用いた実験により,本手法はいくつかの最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-02-25T13:22:17Z) - ViR: Towards Efficient Vision Retention Backbones [97.93707844681893]
視覚保持ネットワーク(ViR)と呼ばれる新しいコンピュータビジョンモデルを提案する。
ViRは並列および繰り返しの定式化を持ち、高速推論と並列トレーニングと競合性能の最適なバランスをとる。
我々は,様々なデータセットサイズと様々な画像解像度を用いた広範囲な実験により,ViRの有効性を検証した。
論文 参考訳(メタデータ) (2023-10-30T16:55:50Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
特徴抽出手順と早期分類タスクを分離する動的知覚器(Dyn-Perceiver)を提案する。
特徴ブランチは画像の特徴を抽出し、分類ブランチは分類タスクに割り当てられた遅延コードを処理する。
早期出口は分類枝に限られており、低レベルの特徴において線形分離性は不要である。
論文 参考訳(メタデータ) (2023-06-20T03:00:22Z) - A-MuSIC: An Adaptive Ensemble System For Visual Place Recognition In
Changing Environments [22.58641358408613]
視覚的位置認識(VPR)は、ロボットナビゲーションとローカライゼーションシステムにおいて不可欠な要素である。
すべての環境条件において、単一のVPR技術が優れているわけではない。
A-MuSIC(Adaptive Multi-Self Identification and Correction)と呼ばれる適応型VPRシステム
A-MuSICは、テストされたすべてのベンチマークデータセット間で最先端のVPRパフォーマンスにマッチまたは打ち勝つ。
論文 参考訳(メタデータ) (2023-03-24T19:25:22Z) - MixVPR: Feature Mixing for Visual Place Recognition [3.6739949215165164]
視覚的場所認識(VPR)は、モバイルロボティクスと自律運転の重要な部分である。
我々は,事前学習したバックボーンから特徴マップをグローバルな特徴の集合として取り出す,新しい総合的特徴集約技術であるMixVPRを紹介する。
複数の大規模ベンチマークで広範な実験を行い,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-03-03T19:24:03Z) - SwitchHit: A Probabilistic, Complementarity-Based Switching System for
Improved Visual Place Recognition in Changing Environments [20.917586014941033]
あらゆる種類の環境で動作可能な普遍的なVPR技術は存在しない。
リソース制約のある組み込みプラットフォームでは,複数のVPRテクニックの並列実行が禁止される可能性がある。
本稿では,確率的相補性に基づくスイッチングVPRシステムであるSwitchHitを提案する。
論文 参考訳(メタデータ) (2022-03-01T16:23:22Z) - Video Coding for Machine: Compact Visual Representation Compression for
Intelligent Collaborative Analytics [101.35754364753409]
Video Coding for Machines (VCM) は、ビデオ/画像圧縮と特徴圧縮をある程度別々の研究トラックにブリッジすることを約束している。
本稿では,既存の学術・産業活動に基づくVCM方法論と哲学を要約する。
論文 参考訳(メタデータ) (2021-10-18T12:42:13Z) - An Efficient and Scalable Collection of Fly-inspired Voting Units for
Visual Place Recognition in Changing Environments [20.485491385050615]
ローオーバーヘッドのVPR技術は、ローエンドの安価なハードウェアを搭載したプラットフォームを可能にする。
我々のゴールは、外観変化と小さな視点変化に対する最先端のロバスト性を達成しつつ、極端なコンパクト性と効率のアルゴリズムを提供することである。
論文 参考訳(メタデータ) (2021-09-22T19:01:20Z) - Real-Time Visual Object Tracking via Few-Shot Learning [107.39695680340877]
ビジュアルオブジェクト追跡(VOT)はFew-Shot Learning(FSL)の拡張タスクと見なすことができる。
適応速度を高速化しながら,多種多様のFSLアルゴリズムを適用可能な2段階のフレームワークを提案する。
VOT2018,OTB2015, NFS, UAV123, TrackingNet, GOT-10kの主要ベンチマークに関する実験を実施し,望ましいパフォーマンス向上とリアルタイム速度を示した。
論文 参考訳(メタデータ) (2021-03-18T10:02:03Z) - VPR-Bench: An Open-Source Visual Place Recognition Evaluation Framework
with Quantifiable Viewpoint and Appearance Change [25.853640977526705]
VPRの研究は、カメラハードウェアの改善とディープラーニングベースの技術の可能性により、過去10年間で急速に成長してきた。
この成長は、特に性能評価に関する分野における断片化と標準化の欠如につながった。
本稿では,VPR技術の性能評価を行うオープンソースフレームワーク「VPR-Bench」を通じて,これらのギャップに対処する。
論文 参考訳(メタデータ) (2020-05-17T00:27:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。