Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization
- URL: http://arxiv.org/abs/2210.01060v2
- Date: Fri, 26 Apr 2024 17:05:28 GMT
- Title: Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization
- Authors: Erik Skau, Andrew Hollis, Stephan Eidenbenz, Kim Rasmussen, Boian Alexandrov,
- Abstract summary: We introduce a novel mathematically sound method that integrates theoretical process models with interrelated minimal Hidden Markov Models.
Our method consolidates: (a) theoretical process models, (b) HMMs, (c) coupled nonnegative matrix-tensor factorizations, and (d) custom model selection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring of industrial processes is a critical capability in industry and in government to ensure reliability of production cycles, quick emergency response, and national security. Process monitoring allows users to gauge the progress of an organization in an industrial process or predict the degradation or aging of machine parts in processes taking place at a remote location. Similar to many data science applications, we usually only have access to limited raw data, such as satellite imagery, short video clips, event logs, and signatures captured by a small set of sensors. To combat data scarcity, we leverage the knowledge of Subject Matter Experts (SMEs) who are familiar with the actions of interest. SMEs provide expert knowledge of the essential activities required for task completion and the resources necessary to carry out each of these activities. Various process mining techniques have been developed for this type of analysis; typically such approaches combine theoretical process models built based on domain expert insights with ad-hoc integration of available pieces of raw data. Here, we introduce a novel mathematically sound method that integrates theoretical process models (as proposed by SMEs) with interrelated minimal Hidden Markov Models (HMM), built via nonnegative tensor factorization. Our method consolidates: (a) theoretical process models, (b) HMMs, (c) coupled nonnegative matrix-tensor factorizations, and (d) custom model selection. To demonstrate our methodology and its abilities, we apply it on simple synthetic and real world process models.
Related papers
- Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Process Modeling With Large Language Models [42.0652924091318]
This paper explores the integration of Large Language Models (LLMs) into process modeling.
We propose a framework that leverages LLMs for the automated generation and iterative refinement of process models.
Preliminary results demonstrate the framework's ability to streamline process modeling tasks.
arXiv Detail & Related papers (2024-03-12T11:27:47Z) - Proving the Potential of Skeleton Based Action Recognition to Automate
the Analysis of Manual Processes [0.0]
In this work, based on a video stream, the current motion class in a manual assembly process is detected.
With information on the current motion, Key-Performance-Indicators (KPIs) can be derived easily.
A skeleton-based action recognition approach is taken, as this field recently shows major success in machine vision tasks.
A ML pipeline is developed, to enable extensive research on different (pre-) processing methods and neural nets.
arXiv Detail & Related papers (2023-10-12T16:11:13Z) - A Topical Approach to Capturing Customer Insight In Social Media [0.0]
This research addresses the challenge of fully unsupervised topic extraction in noisy, Big Data contexts.
We present three approaches we built on the Variational Autoencoder framework.
We show that our models achieve equal to better performance than state-of-the-art methods.
arXiv Detail & Related papers (2023-07-14T11:15:28Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Explainable Artificial Intelligence for Improved Modeling of Processes [6.29494485203591]
We evaluate the capability of modern Transformer architectures and more classical Machine Learning technologies of modeling process regularities.
We show that the ML models are capable of predicting critical outcomes and that the attention mechanisms or XAI components offer new insights into the underlying processes.
arXiv Detail & Related papers (2022-12-01T17:56:24Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
The paper presents an approach to process mining providing semi-automatic support to model optimization.
A model simplification approach is proposed, which essentially abstracts the raw model at the desired granularity.
We aim to demonstrate the capabilities of the technological solution using three datasets from different applications in the healthcare domain.
arXiv Detail & Related papers (2022-06-10T16:20:59Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
We propose a novel framework for machine learning based indicators combining pattern type and intensity.
In a case-study from semiconductor industry, our framework goes beyond conventional process control and achieves high quality experimental results.
arXiv Detail & Related papers (2021-03-24T10:13:20Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
We propose a process model for the development of machine learning applications.
The first phase combines business and data understanding as data availability oftentimes affects the feasibility of the project.
The sixth phase covers state-of-the-art approaches for monitoring and maintenance of a machine learning applications.
arXiv Detail & Related papers (2020-03-11T08:25:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.