Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes
- URL: http://arxiv.org/abs/2209.10178v2
- Date: Fri, 23 Sep 2022 16:07:40 GMT
- Title: Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes
- Authors: Alexander Zeiser, Bas van Stein, Thomas B\"ack
- Abstract summary: Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection describes methods of finding abnormal states, instances or
data points that differ from a normal value space. Industrial processes are a
domain where predicitve models are needed for finding anomalous data instances
for quality enhancement. A main challenge, however, is absence of labels in
this environment. This paper contributes to a data-centric way of approaching
artificial intelligence in industrial production. With a use case from additive
manufacturing for automotive components we present a deep-learning-based image
processing pipeline. Additionally, we integrate the concept of domain
randomisation and synthetic data in the loop that shows promising results for
bridging advances in deep learning and its application to real-world,
industrial production processes.
Related papers
- IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
Video anomaly detection (VAD) is a challenging task aiming to recognize anomalies in video frames.
We propose a new dataset, IPAD, specifically designed for VAD in industrial scenarios.
This dataset covers 16 different industrial devices and contains over 6 hours of both synthetic and real-world video footage.
arXiv Detail & Related papers (2024-04-23T13:38:01Z) - The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
We propose the Artificial Neural Twin, which combines concepts from model predictive control, deep learning, and sensor networks.
Our approach introduces differentiable data fusion to estimate the state of distributed process steps.
By treating the interconnected process steps as a quasi neural-network, we can backpropagate loss gradients for process optimization or model fine-tuning to process parameters.
arXiv Detail & Related papers (2024-03-27T08:34:39Z) - Investigation of the Impact of Synthetic Training Data in the Industrial
Application of Terminal Strip Object Detection [4.327763441385371]
In this paper, we investigate the sim-to-real generalization performance of standard object detectors on the complex industrial application of terminal strip object detection.
We manually annotated 300 real images of terminal strips for the evaluation. The results show the cruciality of the objects of interest to have the same scale in either domain.
arXiv Detail & Related papers (2024-03-06T18:33:27Z) - Controllable Image Synthesis of Industrial Data Using Stable Diffusion [2.021800129069459]
We propose a new approach for reusing general-purpose pre-trained generative models on industrial data.
First, we let the model learn the new concept, entailing the novel data distribution.
Then, we force it to learn to condition the generative process, producing industrial images that satisfy well-defined topological characteristics.
arXiv Detail & Related papers (2024-01-06T08:09:24Z) - Neuro-symbolic Empowered Denoising Diffusion Probabilistic Models for
Real-time Anomaly Detection in Industry 4.0 [9.903035948408316]
We propose a diffusion-based model for real-time anomaly prediction in Industry 4.0 processes.
Using a neuro-symbolic approach, we integrate industrial in the model, thereby adding formal knowledge on smart manufacturing.
arXiv Detail & Related papers (2023-07-13T13:52:41Z) - An adaptive human-in-the-loop approach to emission detection of Additive
Manufacturing processes and active learning with computer vision [76.72662577101988]
In-situ monitoring and process control in Additive Manufacturing (AM) allows the collection of large amounts of emission data.
This data can be used as input into 3D and 2D representations of the 3D-printed parts.
The aim of this paper is to propose an adaptive human-in-the-loop approach using Machine Learning techniques.
arXiv Detail & Related papers (2022-12-12T15:11:18Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
We investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent process.
We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN)
arXiv Detail & Related papers (2022-11-11T09:46:58Z) - On a Uniform Causality Model for Industrial Automation [61.303828551910634]
A Uniform Causality Model for various application areas of industrial automation is proposed.
The resulting model describes the behavior of Cyber-Physical Systems mathematically.
It is shown that the model can work as a basis for the application of new approaches in industrial automation that focus on machine learning.
arXiv Detail & Related papers (2022-09-20T11:23:51Z) - Toward Fault Detection in Industrial Welding Processes with Deep
Learning and Data Augmentation [0.0]
This paper addresses the challenges on the industrial realization of the AI tools.
We use object detection algorithms from the object detection API and adapt them to our use case using transfer learning.
We find that moderate scaling of the dataset via image augmentation leads to improvements in intersection over union (IoU) and recall.
arXiv Detail & Related papers (2021-06-18T14:52:49Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.