論文の概要: One-shot Detail Retouching with Patch Space Neural Transformation
Blending
- arxiv url: http://arxiv.org/abs/2210.01217v2
- Date: Sun, 9 Apr 2023 18:06:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 23:26:05.746956
- Title: One-shot Detail Retouching with Patch Space Neural Transformation
Blending
- Title(参考訳): パッチスペースニューラルトランスフォーメーションブレンドによるワンショットディテールリタッチ
- Authors: Fazilet Gokbudak and Cengiz Oztireli
- Abstract要約: 本稿では,一対の前後のサンプル画像に基づいて,入力画像の細部を自動的に修正するワンショット学習手法を提案する。
我々のアプローチは、新しい画像への正確で一般的な細部編集の転送を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Photo retouching is a difficult task for novice users as it requires expert
knowledge and advanced tools. Photographers often spend a great deal of time
generating high-quality retouched photos with intricate details. In this paper,
we introduce a one-shot learning based technique to automatically retouch
details of an input image based on just a single pair of before and after
example images. Our approach provides accurate and generalizable detail edit
transfer to new images. We achieve these by proposing a new representation for
image to image maps. Specifically, we propose neural field based transformation
blending in the patch space for defining patch to patch transformations for
each frequency band. This parametrization of the map with anchor
transformations and associated weights, and spatio-spectral localized patches,
allows us to capture details well while staying generalizable. We evaluate our
technique both on known ground truth filters and artist retouching edits. Our
method accurately transfers complex detail retouching edits.
- Abstract(参考訳): 初心者にとって写真編集は、専門知識と高度なツールを必要とするため、難しい作業だ。
写真家はしばしば、複雑な細部を詰め込んだ高品質なリタッチ写真を作るのに多くの時間を費やしている。
本稿では,一対の前後のサンプル画像に基づいて,入力画像の細部を自動的に修正するワンショット学習手法を提案する。
我々のアプローチは、新しい画像への正確かつ一般化可能な詳細編集転送を提供する。
画像マップに画像を表す新しい表現を提案することで、これらを実現する。
具体的には、各周波数帯域に対するパッチ変換を定義するために、パッチ空間にニューラルネットワークベースの変換ブレンディングを提案する。
このアンカー変換とそれに伴う重み付き写像のパラメトリゼーション、および時空間局在パッチは、一般化可能でありながら詳細をうまく捉えることができる。
本手法は既知のグラウンド・トゥルート・フィルタとアーティストによる編集のリタッチの両方で評価する。
本手法は複雑な細部修正編集を正確に転送する。
関連論文リスト
- The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing [3.58736715327935]
本稿では,w-latentとF-latentの両方で編集できる新しい方法であるStyleFeatureEditorを紹介する。
また、Fレイテンシーを正確に編集するためのモデルをトレーニングするために特別に設計された新しいトレーニングパイプラインも提示する。
提案手法は最先端の符号化手法と比較し, モデルが復元品質の点で優れていることを示す。
論文 参考訳(メタデータ) (2024-06-15T11:28:32Z) - Gradual Residuals Alignment: A Dual-Stream Framework for GAN Inversion
and Image Attribute Editing [36.01737879983636]
GANベースの画像編集は、まずGAN Inversionを利用して、実際の画像をGANの潜時空間に投影し、対応する潜時符号を操作する。
近年のインバージョン法は, 画像の保存性を高めるために, 新たな高ビット特徴を主に利用している。
編集中、既存の作業は失われた詳細を正確に補完することができず、編集性に欠ける。
論文 参考訳(メタデータ) (2024-02-22T09:28:47Z) - Zero-shot Image-to-Image Translation [57.46189236379433]
手動のプロンプトを使わずに元の画像を保存できる画像から画像への変換法であるpix2pix-zeroを提案する。
本稿では,拡散過程全体を通して入力画像の相互注意マップを維持することを目的とした,相互注意誘導を提案する。
本手法では,これらの編集のための追加のトレーニングを必要とせず,既存のテキスト・画像拡散モデルを直接使用することができる。
論文 参考訳(メタデータ) (2023-02-06T18:59:51Z) - Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with
Conditional StyleGAN [88.62422914645066]
任意のポーズで1つの画像から人物を再レンダリングするアルゴリズムを提案する。
既存の方法では、画像の同一性や細部を保ちながら、隠蔽されたコンテンツを写実的に幻覚することはしばしば困難である。
本手法は, 定量的評価と視覚的比較の両方において, 最先端のアルゴリズムと良好に比較できることを示す。
論文 参考訳(メタデータ) (2021-09-13T17:59:33Z) - Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality
Artistic Style Transfer [115.13853805292679]
アートスタイルの転送は、サンプルイメージからコンテンツイメージへのスタイルの移行を目的としている。
図案作成と細部改訂の共通画法に触発されて,ラプラシアンピラミッドネットワーク(LapStyle)という新しいフィードフォワード方式を導入する。
本手法は, 定型的パターンを適切に伝達した高品質なスタイリズド画像をリアルタイムで合成する。
論文 参考訳(メタデータ) (2021-04-12T11:53:53Z) - Designing an Encoder for StyleGAN Image Manipulation [38.909059126878354]
最先端の無条件発電機であるStyleGANの潜伏空間について検討する。
そこで我々は,StyleGAN潜在空間における歪み依存性トレードオフと歪み知覚トレードオフの存在を同定し,解析する。
本稿では,実画像の編集を容易にするための2つの原理に基づくエンコーダを提案する。
論文 参考訳(メタデータ) (2021-02-04T17:52:38Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
コントロール可能なセマンティックイメージ編集により、ユーザーはクリック数回で画像属性全体を変更できる。
現在のアプローチでは、絡み合った属性編集、グローバルなイメージアイデンティティの変更、フォトリアリズムの低下に悩まされることが多い。
本稿では,主に定性評価に焦点を当てた先行研究とは異なり,制御可能な編集性能を測定するための定量的評価手法を提案する。
論文 参考訳(メタデータ) (2021-02-01T21:38:36Z) - Deep Image Compositing [93.75358242750752]
ユーザ入力なしで高品質の画像合成を自動生成する手法を提案する。
ラプラシアン・ピラミッド・ブレンディングにインスパイアされ、フォアグラウンドや背景画像からの情報を効果的に融合させるために、密結合型多ストリーム融合ネットワークが提案されている。
実験により,提案手法は高品質な合成物を自動生成し,定性的かつ定量的に既存手法より優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-11-04T06:12:24Z) - Look here! A parametric learning based approach to redirect visual
attention [49.609412873346386]
画像領域を微妙な画像編集によってより注目度の高いものにするための自動手法を提案する。
我々のモデルは、前景および背景画像領域に適用可能な、異なるグローバルパラメトリック変換セットを予測する。
編集により、任意の画像サイズでインタラクティブなレートでの推論が可能になり、簡単に動画に一般化できる。
論文 参考訳(メタデータ) (2020-08-12T16:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。