論文の概要: Estimating productivity gains in digital automation
- arxiv url: http://arxiv.org/abs/2210.01252v1
- Date: Mon, 3 Oct 2022 22:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 15:16:38.946069
- Title: Estimating productivity gains in digital automation
- Title(参考訳): デジタルオートメーションにおける生産性向上の推定
- Authors: Mauricio Jacobo-Romero, Danilo S. Carvalho and Andr\'e Freitas
- Abstract要約: 本稿では,生産チェーンにおける人工知能(AI)コンポーネントの導入効果を評価するための,新たな生産性推定モデルを提案する。
i)Solowの二分法を説明する理論的かつ実証的な証拠;(ii)生産性の変動を推定し評価するデータ駆動モデル;(iii)プロセスマイニングデータセットに基づいてビジネスプロセス、BP、生産性を決定する方法論を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes a novel productivity estimation model to evaluate the
effects of adopting Artificial Intelligence (AI) components in a production
chain. Our model provides evidence to address the "AI's" Solow's Paradox. We
provide (i) theoretical and empirical evidence to explain Solow's dichotomy;
(ii) a data-driven model to estimate and asses productivity variations; (iii) a
methodology underpinned on process mining datasets to determine the business
process, BP, and productivity; (iv) a set of computer simulation parameters;
(v) and empirical analysis on labour-distribution. These provide data on why we
consider AI Solow's paradox a consequence of metric mismeasurement.
- Abstract(参考訳): 本稿では,生産チェーンにおける人工知能(AI)コンポーネントの導入効果を評価するための生産性推定モデルを提案する。
私たちのモデルは、"AI's" Solow's Paradoxに対処するための証拠を提供します。
我々は
(i)ソローの分断を説明する理論的かつ実証的な証拠
(ii)生産性の変動を推定し評価するデータ駆動モデル
三 ビジネスプロセス、bp及び生産性を決定するためのプロセスマイニングデータセットを基礎とする方法論
(iv) コンピュータシミュレーションパラメータの組
(v)労働分配に関する実証分析
これらのデータは、AI Solowのパラドックスがメトリクスの誤測定の結果であると考える理由に関するデータを提供する。
関連論文リスト
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - The Artificial Neural Twin -- Process Optimization and Continual Learning in Distributed Process Chains [3.79770624632814]
本稿では,モデル予測制御,ディープラーニング,センサネットワークの概念を組み合わせた人工ニューラルツインを提案する。
我々のアプローチでは、分散プロセスのステップの状態を推定するために、微分可能なデータ融合を導入します。
相互接続されたプロセスステップを準ニューラルネットワークとして扱うことで、プロセス最適化やモデル微調整のための損失勾配をプロセスパラメータにバックプロパゲートすることができる。
論文 参考訳(メタデータ) (2024-03-27T08:34:39Z) - FIMBA: Evaluating the Robustness of AI in Genomics via Feature
Importance Adversarial Attacks [0.0]
本稿では、認識された公開ゲノムデータセット上の下流タスクを利用するAIモデルの脆弱性を実証する。
我々は、実際のデータを模倣し、モデルの意思決定を混乱させながら、入力変換に焦点を当てた攻撃を展開することによって、モデルの堅牢性を損なう。
実験の結果, 精度が低下し, 偽陽性や偽陰性が増加し, モデル性能が低下していることが明らかとなった。
論文 参考訳(メタデータ) (2024-01-19T12:04:31Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Employing Explainable Artificial Intelligence (XAI) Methodologies to
Analyze the Correlation between Input Variables and Tensile Strength in
Additively Manufactured Samples [0.0]
本研究では, インフィルパーセンテージ, 層高さ, 押出温度, 印刷速度などの入力パラメータが, 添加物製造による引張強度に及ぼす影響について検討した。
我々は、初めて説明可能な人工知能(XAI)技術を導入し、データの分析とシステムの振る舞いに関する貴重な洞察を得ることを可能にした。
その結果, 浸透率と押出温度が引張強度に最も大きな影響を与えているのに対し, 層高と印刷速度の影響は比較的小さいことがわかった。
論文 参考訳(メタデータ) (2023-05-28T21:44:25Z) - Interpretability and causal discovery of the machine learning models to
predict the production of CBM wells after hydraulic fracturing [0.5512295869673146]
観測データから潜在因果関係を発見するための新しい手法が提案されている。
因果発見の理論に基づいて、因果グラフは明示的な入力、出力、処理、共起変数によって導出される。
SHAPは、機械学習モデルを間接的に解釈する生産能力に対する要因の影響を分析するために使用される。
論文 参考訳(メタデータ) (2022-12-21T02:06:26Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
ドイツにあるTrumpf工場に配備されたレーザー切断機から発生するネットワークトラフィックデータについて検討した。
我々は、トラフィック統計を分析し、マシンの内部状態間の依存関係をキャプチャし、ネットワークトラフィックを生産状態依存プロセスとしてモデル化する。
可変オートエンコーダ(VAE)、条件付き可変オートエンコーダ(CVAE)、生成逆ネットワーク(GAN)など、様々な生成モデルの性能の比較を行った。
論文 参考訳(メタデータ) (2022-11-11T09:46:58Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
異常検出は、通常の値空間とは異なる異常状態、インスタンス、あるいはデータポイントを検出する方法を記述する。
本稿では,産業生産における人工知能へのデータ中心のアプローチに寄与する。
論文 参考訳(メタデータ) (2022-09-21T08:14:34Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
モデル最適化のための半自動支援を実現するプロセスマイニング手法を提案する。
所望の粒度で生モデルを抽象化するモデル単純化手法が提案されている。
医療分野の異なるアプリケーションから得られた3つのデータセットを用いて、技術的ソリューションの能力を実証することを目的としている。
論文 参考訳(メタデータ) (2022-06-10T16:20:59Z) - Learnability of Competitive Threshold Models [11.005966612053262]
理論的観点から,競合しきい値モデルの学習可能性について検討する。
ニューラルネットワークによって競合しきい値モデルをシームレスにシミュレートする方法を実証する。
論文 参考訳(メタデータ) (2022-05-08T01:11:51Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。