Understanding Substructures in Commonsense Relations in ConceptNet
- URL: http://arxiv.org/abs/2210.01263v1
- Date: Mon, 3 Oct 2022 22:59:07 GMT
- Title: Understanding Substructures in Commonsense Relations in ConceptNet
- Authors: Ke Shen, Mayank Kejriwal
- Abstract summary: We present a methodology based on unsupervised knowledge graph representation learning and clustering to reveal and study substructures in three heavily used commonsense relations in ConceptNet.
Our results show that, despite having an 'official' definition in ConceptNet, many of these commonsense relations exhibit considerable sub-structure.
In the future, therefore, such relations could be sub-divided into other relations with more refined definitions.
- Score: 8.591839265985412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquiring commonsense knowledge and reasoning is an important goal in modern
NLP research. Despite much progress, there is still a lack of understanding
(especially at scale) of the nature of commonsense knowledge itself. A
potential source of structured commonsense knowledge that could be used to
derive insights is ConceptNet. In particular, ConceptNet contains several
coarse-grained relations, including HasContext, FormOf and SymbolOf, which can
prove invaluable in understanding broad, but critically important, commonsense
notions such as 'context'. In this article, we present a methodology based on
unsupervised knowledge graph representation learning and clustering to reveal
and study substructures in three heavily used commonsense relations in
ConceptNet. Our results show that, despite having an 'official' definition in
ConceptNet, many of these commonsense relations exhibit considerable
sub-structure. In the future, therefore, such relations could be sub-divided
into other relations with more refined definitions. We also supplement our core
study with visualizations and qualitative analyses.
Related papers
- What Really is Commonsense Knowledge? [58.5342212738895]
We survey existing definitions of commonsense knowledge, ground into the three frameworks for defining concepts, and consolidate them into a unified definition of commonsense knowledge.
We then use the consolidated definition for annotations and experiments on the CommonsenseQA and CommonsenseQA 2.0 datasets.
Our study shows that there exists a large portion of non-commonsense-knowledge instances in the two datasets, and a large performance gap on these two subsets.
arXiv Detail & Related papers (2024-11-06T14:54:19Z) - Mapping Knowledge Representations to Concepts: A Review and New
Perspectives [0.6875312133832078]
This review focuses on research that aims to associate internal representations with human understandable concepts.
We find this taxonomy and theories of causality, useful for understanding what can be expected, and not expected, from neural network explanations.
The analysis additionally uncovers an ambiguity in the reviewed literature related to the goal of model explainability.
arXiv Detail & Related papers (2022-12-31T12:56:12Z) - A Probabilistic-Logic based Commonsense Representation Framework for
Modelling Inferences with Multiple Antecedents and Varying Likelihoods [5.87677276882675]
Commonsense knowledge-graphs (CKGs) are important resources towards building machines that can'reason' on text or environmental inputs and make inferences beyond perception.
In this work, we study how commonsense knowledge can be better represented by -- (i) utilizing a probabilistic logic representation scheme to model composite inferential knowledge and represent conceptual beliefs with varying likelihoods, and (ii) incorporating a hierarchical conceptual ontology to identify salient concept-relevant relations and organize beliefs at different conceptual levels.
arXiv Detail & Related papers (2022-11-30T08:44:30Z) - COPEN: Probing Conceptual Knowledge in Pre-trained Language Models [60.10147136876669]
Conceptual knowledge is fundamental to human cognition and knowledge bases.
Existing knowledge probing works only focus on factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge.
We design three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts.
For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark.
arXiv Detail & Related papers (2022-11-08T08:18:06Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Commonsense Knowledge in Word Associations and ConceptNet [37.751909219863585]
This paper presents an in-depth comparison of two large-scale resources of general knowledge: ConcpetNet and SWOW.
We examine the structure, overlap and differences between the two graphs, as well as the extent to which they encode situational commonsense knowledge.
arXiv Detail & Related papers (2021-09-20T06:06:30Z) - Dimensions of Commonsense Knowledge [60.49243784752026]
We survey a wide range of popular commonsense sources with a special focus on their relations.
We consolidate these relations into 13 knowledge dimensions, each abstracting over more specific relations found in sources.
arXiv Detail & Related papers (2021-01-12T17:52:39Z) - A Data-Driven Study of Commonsense Knowledge using the ConceptNet
Knowledge Base [8.591839265985412]
Acquiring commonsense knowledge and reasoning is recognized as an important frontier in achieving general Artificial Intelligence (AI)
In this paper, we propose and conduct a systematic study to enable a deeper understanding of commonsense knowledge by doing an empirical and structural analysis of the ConceptNet knowledge base.
Detailed experimental results on three carefully designed research questions, using state-of-the-art unsupervised graph representation learning ('embedding') and clustering techniques, reveal deep substructures in ConceptNet relations.
arXiv Detail & Related papers (2020-11-28T08:08:25Z) - A Context-based Disambiguation Model for Sentiment Concepts Using a
Bag-of-concepts Approach [0.0]
This study presents a context-based model to solve ambiguous polarity concepts using commonsense knowledge.
The proposed model is evaluated by applying a corpus of product reviews, called Semeval.
The experimental results revealed an accuracy rate of 82.07%, representing the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-08-07T07:16:40Z) - Computational linguistic assessment of textbook and online learning
media by means of threshold concepts in business education [59.003956312175795]
From a linguistic perspective, threshold concepts are instances of specialized vocabularies, exhibiting particular linguistic features.
The profiles of 63 threshold concepts from business education have been investigated in textbooks, newspapers, and Wikipedia.
The three kinds of resources can indeed be distinguished in terms of their threshold concepts' profiles.
arXiv Detail & Related papers (2020-08-05T12:56:16Z) - A Chain Graph Interpretation of Real-World Neural Networks [58.78692706974121]
We propose an alternative interpretation that identifies NNs as chain graphs (CGs) and feed-forward as an approximate inference procedure.
The CG interpretation specifies the nature of each NN component within the rich theoretical framework of probabilistic graphical models.
We demonstrate with concrete examples that the CG interpretation can provide novel theoretical support and insights for various NN techniques.
arXiv Detail & Related papers (2020-06-30T14:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.