Active Learning for Regression with Aggregated Outputs
- URL: http://arxiv.org/abs/2210.01329v1
- Date: Tue, 4 Oct 2022 02:45:14 GMT
- Title: Active Learning for Regression with Aggregated Outputs
- Authors: Tomoharu Iwata
- Abstract summary: We propose an active learning method that sequentially selects sets to be labeled to improve the predictive performance with fewer labeled sets.
With the experiments using various datasets, we demonstrate that the proposed method achieves better predictive performance with fewer labeled sets than existing methods.
- Score: 28.40183946090337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the privacy protection or the difficulty of data collection, we cannot
observe individual outputs for each instance, but we can observe aggregated
outputs that are summed over multiple instances in a set in some real-world
applications. To reduce the labeling cost for training regression models for
such aggregated data, we propose an active learning method that sequentially
selects sets to be labeled to improve the predictive performance with fewer
labeled sets. For the selection measurement, the proposed method uses the
mutual information, which quantifies the reduction of the uncertainty of the
model parameters by observing the aggregated output. With Bayesian linear basis
functions for modeling outputs given an input, which include approximated
Gaussian processes and neural networks, we can efficiently calculate the mutual
information in a closed form. With the experiments using various datasets, we
demonstrate that the proposed method achieves better predictive performance
with fewer labeled sets than existing methods.
Related papers
- Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
We show that jointly selecting batches of data is more effective for learning than selecting examples independently.
We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points.
arXiv Detail & Related papers (2024-06-25T16:52:37Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
We present a theoretically optimal solution for addressing both coreset selection and active learning.
Our proposed method, COPS, is designed to minimize the expected loss of a model trained on subsampled data.
arXiv Detail & Related papers (2023-09-05T14:06:33Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Partial sequence labeling with structured Gaussian Processes [8.239028141030621]
We propose structured Gaussian Processes for partial sequence labeling.
It encodes uncertainty in the prediction and does not need extra effort for model selection and hyper parameter learning.
It is evaluated on several sequence labeling tasks and the experimental results show the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-20T00:56:49Z) - Leachable Component Clustering [10.377914682543903]
In this work, a novel approach to clustering of incomplete data, termed leachable component clustering, is proposed.
The proposed method handles data imputation with Bayes alignment, and collects the lost patterns in theory.
Experiments on several artificial incomplete data sets demonstrate that, the proposed method is able to present superior performance compared with other state-of-the-art algorithms.
arXiv Detail & Related papers (2022-08-28T13:13:17Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Mixing Deep Learning and Multiple Criteria Optimization: An Application
to Distributed Learning with Multiple Datasets [0.0]
Training phase is the most important stage during the machine learning process.
We develop a multiple criteria optimization model in which each criterion measures the distance between the output associated with a specific input and its label.
We propose a scalarization approach to implement this model and numerical experiments in digit classification using MNIST data.
arXiv Detail & Related papers (2021-12-02T16:00:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.