Leachable Component Clustering
- URL: http://arxiv.org/abs/2208.13217v1
- Date: Sun, 28 Aug 2022 13:13:17 GMT
- Title: Leachable Component Clustering
- Authors: Miao Cheng, Xinge You
- Abstract summary: In this work, a novel approach to clustering of incomplete data, termed leachable component clustering, is proposed.
The proposed method handles data imputation with Bayes alignment, and collects the lost patterns in theory.
Experiments on several artificial incomplete data sets demonstrate that, the proposed method is able to present superior performance compared with other state-of-the-art algorithms.
- Score: 10.377914682543903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering attempts to partition data instances into several distinctive
groups, while the similarities among data belonging to the common partition can
be principally reserved. Furthermore, incomplete data frequently occurs in many
realworld applications, and brings perverse influence on pattern analysis. As a
consequence, the specific solutions to data imputation and handling are
developed to conduct the missing values of data, and independent stage of
knowledge exploitation is absorbed for information understanding. In this work,
a novel approach to clustering of incomplete data, termed leachable component
clustering, is proposed. Rather than existing methods, the proposed method
handles data imputation with Bayes alignment, and collects the lost patterns in
theory. Due to the simple numeric computation of equations, the proposed method
can learn optimized partitions while the calculation efficiency is held.
Experiments on several artificial incomplete data sets demonstrate that, the
proposed method is able to present superior performance compared with other
state-of-the-art algorithms.
Related papers
- Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - Learning A Disentangling Representation For PU Learning [18.94726971543125]
We propose to learn a neural network-based data representation using a loss function that can be used to project the unlabeled data into two clusters.
We conduct experiments on simulated PU data that demonstrate the improved performance of our proposed method compared to the current state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-05T18:33:32Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Inv-SENnet: Invariant Self Expression Network for clustering under
biased data [17.25929452126843]
We propose a novel framework for jointly removing unwanted attributes (biases) while learning to cluster data points in individual subspaces.
Our experimental result on synthetic and real-world datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-11-13T01:19:06Z) - Active Learning for Regression with Aggregated Outputs [28.40183946090337]
We propose an active learning method that sequentially selects sets to be labeled to improve the predictive performance with fewer labeled sets.
With the experiments using various datasets, we demonstrate that the proposed method achieves better predictive performance with fewer labeled sets than existing methods.
arXiv Detail & Related papers (2022-10-04T02:45:14Z) - ExClus: Explainable Clustering on Low-dimensional Data Representations [9.496898312608307]
Dimensionality reduction and clustering techniques are frequently used to analyze complex data sets, but their results are often not easy to interpret.
We consider how to support users in interpreting apparent cluster structure on scatter plots where the axes are not directly interpretable.
We propose a new method to compute an interpretable clustering automatically, where the explanation is in the original high-dimensional space and the clustering is coherent in the low-dimensional projection.
arXiv Detail & Related papers (2021-11-04T21:24:01Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Evaluating representations by the complexity of learning low-loss
predictors [55.94170724668857]
We consider the problem of evaluating representations of data for use in solving a downstream task.
We propose to measure the quality of a representation by the complexity of learning a predictor on top of the representation that achieves low loss on a task of interest.
arXiv Detail & Related papers (2020-09-15T22:06:58Z) - New advances in enumerative biclustering algorithms with online
partitioning [80.22629846165306]
This paper further extends RIn-Close_CVC, a biclustering algorithm capable of performing an efficient, complete, correct and non-redundant enumeration of maximal biclusters with constant values on columns in numerical datasets.
The improved algorithm is called RIn-Close_CVC3, keeps those attractive properties of RIn-Close_CVC, and is characterized by: a drastic reduction in memory usage; a consistent gain in runtime.
arXiv Detail & Related papers (2020-03-07T14:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.