Movement Analytics: Current Status, Application to Manufacturing, and
Future Prospects from an AI Perspective
- URL: http://arxiv.org/abs/2210.01344v1
- Date: Tue, 4 Oct 2022 03:27:17 GMT
- Title: Movement Analytics: Current Status, Application to Manufacturing, and
Future Prospects from an AI Perspective
- Authors: Peter Baumgartner, Daniel Smith, Mashud Rana, Reena Kapoor, Elena
Tartaglia, Andreas Schutt, Ashfaqur Rahman, John Taylor, Simon Dunstall
- Abstract summary: IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities over space and time.
Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc.
- Score: 1.2908803492980705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven decision making is becoming an integral part of manufacturing
companies. Data is collected and commonly used to improve efficiency and
produce high quality items for the customers. IoT-based and other forms of
object tracking are an emerging tool for collecting movement data of
objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over
space and time. Movement data can provide valuable insights like process
bottlenecks, resource utilization, effective working time etc. that can be used
for decision making and improving efficiency.
Turning movement data into valuable information for industrial management and
decision making requires analysis methods. We refer to this process as movement
analytics. The purpose of this document is to review the current state of work
for movement analytics both in manufacturing and more broadly.
We survey relevant work from both a theoretical perspective and an
application perspective. From the theoretical perspective, we put an emphasis
on useful methods from two research areas: machine learning, and logic-based
knowledge representation. We also review their combinations in view of movement
analytics, and we discuss promising areas for future development and
application. Furthermore, we touch on constraint optimization.
From an application perspective, we review applications of these methods to
movement analytics in a general sense and across various industries. We also
describe currently available commercial off-the-shelf products for tracking in
manufacturing, and we overview main concepts of digital twins and their
applications.
Related papers
- Context-aware Advertisement Modeling and Applications in Rapid Transit Systems [1.342834401139078]
We present an advertisement model using behavioral and tracking analysis.
We present a model using the agent-based modeling (ABM) technique, with the target audience of rapid transit system users to target the right person for advertisement applications.
arXiv Detail & Related papers (2024-09-16T02:59:36Z) - Automated Knowledge Graph Learning in Industrial Processes [0.0]
This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications.
Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery.
arXiv Detail & Related papers (2024-07-02T09:47:56Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - Literature Review: Computer Vision Applications in Transportation
Logistics and Warehousing [58.720142291102135]
Computer vision applications in transportation logistics and warehousing have a huge potential for process automation.
We present a structured literature review on research in the field to help leverage this potential.
arXiv Detail & Related papers (2023-04-12T17:33:41Z) - Motion Capture Benchmark of Real Industrial Tasks and Traditional Crafts
for Human Movement Analysis [0.0]
This paper presents seven datasets recorded using inertial-based motion capture.
The datasets contain professional gestures carried out by industrial operators and skilled craftsmen performed in real conditions in-situ.
arXiv Detail & Related papers (2023-04-03T10:29:24Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z) - Data Science for Motion and Time Analysis with Modern Motion Sensor Data [14.105132549564873]
The motion-and-time analysis has been a popular research topic in operations research.
It is regaining attention as continuous improvement tools for lean manufacturing and smart factory.
This paper develops a framework for data-driven analysis of work motions and studies their correlations to work speeds or execution rates.
arXiv Detail & Related papers (2020-08-25T02:33:33Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.