Automated Knowledge Graph Learning in Industrial Processes
- URL: http://arxiv.org/abs/2407.02106v1
- Date: Tue, 2 Jul 2024 09:47:56 GMT
- Title: Automated Knowledge Graph Learning in Industrial Processes
- Authors: Lolitta Ammann, Jorge Martinez-Gil, Michael Mayr, Georgios C. Chasparis,
- Abstract summary: This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications.
Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industrial processes generate vast amounts of time series data, yet extracting meaningful relationships and insights remains challenging. This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications. Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery. Additionally, it employs Granger causality to identify key attributes that can inform the design of predictive models. To illustrate the practical utility of our approach, we also present a motivating use case demonstrating the benefits of our framework in a real-world industrial scenario. Further, we demonstrate how the automated conversion of time series data into knowledge graphs can identify causal influences or dependencies between important process parameters.
Related papers
- Procedure Model for Building Knowledge Graphs for Industry Applications [0.0]
The graph-based integration of previously unconnected information with domain knowledge provides new insights.
This paper presents a practical step-by-step procedure model for building an RDF knowledge graph.
arXiv Detail & Related papers (2024-09-20T11:46:37Z) - IPAD: Industrial Process Anomaly Detection Dataset [71.39058003212614]
Video anomaly detection (VAD) is a challenging task aiming to recognize anomalies in video frames.
We propose a new dataset, IPAD, specifically designed for VAD in industrial scenarios.
This dataset covers 16 different industrial devices and contains over 6 hours of both synthetic and real-world video footage.
arXiv Detail & Related papers (2024-04-23T13:38:01Z) - AI Competitions and Benchmarks: Dataset Development [42.164845505628506]
This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience.
We develop the tasks involved in dataset development and offer insights into their effective management.
Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation.
arXiv Detail & Related papers (2024-04-15T12:01:42Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - Time-Series Pattern Recognition in Smart Manufacturing Systems: A
Literature Review and Ontology [3.5097082077065003]
This paper provides a structured perspective of the current state of time-series pattern recognition in manufacturing.
It aims to provide practical and actionable guidelines for application and recommendations for advancing time-series analytics.
arXiv Detail & Related papers (2023-01-29T17:18:59Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - OG-SGG: Ontology-Guided Scene Graph Generation. A Case Study in Transfer
Learning for Telepresence Robotics [124.08684545010664]
Scene graph generation from images is a task of great interest to applications such as robotics.
We propose an initial approximation to a framework called Ontology-Guided Scene Graph Generation (OG-SGG)
arXiv Detail & Related papers (2022-02-21T13:23:15Z) - Modeling and Optimizing Laser-Induced Graphene [59.8912133964006]
We provide datasets that describe the optimization of the production of laser-induced graphene.
We pose three challenges based on the datasets we provide.
We present illustrative results, along with the code used to generate them, as a starting point for interested users.
arXiv Detail & Related papers (2021-07-29T18:08:24Z) - Principles and Practice of Explainable Machine Learning [12.47276164048813]
This report focuses on data-driven methods -- machine learning (ML) and pattern recognition models in particular.
With the increasing prevalence and complexity of methods, business stakeholders in the very least have a growing number of concerns about the drawbacks of models.
We have undertaken a survey to help industry practitioners understand the field of explainable machine learning better.
arXiv Detail & Related papers (2020-09-18T14:50:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.