Extraneousness-Aware Imitation Learning
- URL: http://arxiv.org/abs/2210.01379v1
- Date: Tue, 4 Oct 2022 04:42:26 GMT
- Title: Extraneousness-Aware Imitation Learning
- Authors: Ray Chen Zheng, Kaizhe Hu, Zhecheng Yuan, Boyuan Chen, Huazhe Xu
- Abstract summary: Extraneousness-Aware Learning (EIL) learns visuomotor policies from third-person demonstrations with extraneous subsequences.
EIL learns action-conditioned observation embeddings in a self-supervised manner and retrieves task-relevant observations across visual demonstrations.
Experimental results show that EIL outperforms strong baselines and achieves comparable policies to those trained with perfect demonstration.
- Score: 25.60384350984274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual imitation learning provides an effective framework to learn skills
from demonstrations. However, the quality of the provided demonstrations
usually significantly affects the ability of an agent to acquire desired
skills. Therefore, the standard visual imitation learning assumes near-optimal
demonstrations, which are expensive or sometimes prohibitive to collect.
Previous works propose to learn from noisy demonstrations; however, the noise
is usually assumed to follow a context-independent distribution such as a
uniform or gaussian distribution. In this paper, we consider another crucial
yet underexplored setting -- imitation learning with task-irrelevant yet
locally consistent segments in the demonstrations (e.g., wiping sweat while
cutting potatoes in a cooking tutorial). We argue that such noise is common in
real world data and term them "extraneous" segments. To tackle this problem, we
introduce Extraneousness-Aware Imitation Learning (EIL), a self-supervised
approach that learns visuomotor policies from third-person demonstrations with
extraneous subsequences. EIL learns action-conditioned observation embeddings
in a self-supervised manner and retrieves task-relevant observations across
visual demonstrations while excluding the extraneous ones. Experimental results
show that EIL outperforms strong baselines and achieves comparable policies to
those trained with perfect demonstration on both simulated and real-world robot
control tasks. The project page can be found at
https://sites.google.com/view/eil-website.
Related papers
- Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - Out-of-Dynamics Imitation Learning from Multimodal Demonstrations [68.46458026983409]
We study out-of-dynamics imitation learning (OOD-IL), which relaxes the assumption to that the demonstrator and the imitator have the same state spaces.
OOD-IL enables imitation learning to utilize demonstrations from a wide range of demonstrators but introduces a new challenge.
We develop a better transferability measurement to tackle this newly-emerged challenge.
arXiv Detail & Related papers (2022-11-13T07:45:06Z) - Leveraging Demonstrations with Latent Space Priors [90.56502305574665]
We propose to leverage demonstration datasets by combining skill learning and sequence modeling.
We show how to acquire such priors from state-only motion capture demonstrations and explore several methods for integrating them into policy learning.
Our experimental results confirm that latent space priors provide significant gains in learning speed and final performance in a set of challenging sparse-reward environments.
arXiv Detail & Related papers (2022-10-26T13:08:46Z) - Robustness of Demonstration-based Learning Under Limited Data Scenario [54.912936555876826]
Demonstration-based learning has shown great potential in stimulating pretrained language models' ability under limited data scenario.
Why such demonstrations are beneficial for the learning process remains unclear since there is no explicit alignment between the demonstrations and the predictions.
In this paper, we design pathological demonstrations by gradually removing intuitively useful information from the standard ones to take a deep dive of the robustness of demonstration-based sequence labeling.
arXiv Detail & Related papers (2022-10-19T16:15:04Z) - Learning Feasibility to Imitate Demonstrators with Different Dynamics [23.239058855103067]
The goal of learning from demonstrations is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations.
We learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator.
Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works.
arXiv Detail & Related papers (2021-10-28T14:15:47Z) - Playful Interactions for Representation Learning [82.59215739257104]
We propose to use playful interactions in a self-supervised manner to learn visual representations for downstream tasks.
We collect 2 hours of playful data in 19 diverse environments and use self-predictive learning to extract visual representations.
Our representations generalize better than standard behavior cloning and can achieve similar performance with only half the number of required demonstrations.
arXiv Detail & Related papers (2021-07-19T17:54:48Z) - Learning from Imperfect Demonstrations from Agents with Varying Dynamics [29.94164262533282]
We develop a metric composed of a feasibility score and an optimality score to measure how useful a demonstration is for imitation learning.
Our experiments on four environments in simulation and on a real robot show improved learned policies with higher expected return.
arXiv Detail & Related papers (2021-03-10T07:39:38Z) - Robust Maximum Entropy Behavior Cloning [15.713997170792842]
Imitation learning (IL) algorithms use expert demonstrations to learn a specific task.
Most of the existing approaches assume that all expert demonstrations are reliable and trustworthy, but what if there exist some adversarial demonstrations among the given data-set?
We propose a novel general frame-work to directly generate a policy from demonstrations that autonomously detect the adversarial demonstrations and exclude them from the data set.
arXiv Detail & Related papers (2021-01-04T22:08:46Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
We propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations.
Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations.
arXiv Detail & Related papers (2020-06-14T06:03:06Z) - State-Only Imitation Learning for Dexterous Manipulation [63.03621861920732]
In this paper, we explore state-only imitation learning.
We train an inverse dynamics model and use it to predict actions for state-only demonstrations.
Our method performs on par with state-action approaches and considerably outperforms RL alone.
arXiv Detail & Related papers (2020-04-07T17:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.