Learning from Imperfect Demonstrations from Agents with Varying Dynamics
- URL: http://arxiv.org/abs/2103.05910v1
- Date: Wed, 10 Mar 2021 07:39:38 GMT
- Title: Learning from Imperfect Demonstrations from Agents with Varying Dynamics
- Authors: Zhangjie Cao, Dorsa Sadigh
- Abstract summary: We develop a metric composed of a feasibility score and an optimality score to measure how useful a demonstration is for imitation learning.
Our experiments on four environments in simulation and on a real robot show improved learned policies with higher expected return.
- Score: 29.94164262533282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation learning enables robots to learn from demonstrations. Previous
imitation learning algorithms usually assume access to optimal expert
demonstrations. However, in many real-world applications, this assumption is
limiting. Most collected demonstrations are not optimal or are produced by an
agent with slightly different dynamics. We therefore address the problem of
imitation learning when the demonstrations can be sub-optimal or be drawn from
agents with varying dynamics. We develop a metric composed of a feasibility
score and an optimality score to measure how useful a demonstration is for
imitation learning. The proposed score enables learning from more informative
demonstrations, and disregarding the less relevant demonstrations. Our
experiments on four environments in simulation and on a real robot show
improved learned policies with higher expected return.
Related papers
- Skill Disentanglement for Imitation Learning from Suboptimal
Demonstrations [60.241144377865716]
We consider the imitation of sub-optimal demonstrations, with both a small clean demonstration set and a large noisy set.
We propose method by evaluating and imitating at the sub-demonstration level, encoding action primitives of varying quality into different skills.
arXiv Detail & Related papers (2023-06-13T17:24:37Z) - A Survey of Demonstration Learning [0.0]
Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating the behavior of an expert shown in demonstrations.
It is gaining significant traction due to having tremendous potential for learning complex behaviors from demonstrations.
Due to learning without interacting with the environment, demonstration learning would allow the automation of a wide range of real world applications such as robotics and healthcare.
arXiv Detail & Related papers (2023-03-20T15:22:10Z) - Out-of-Dynamics Imitation Learning from Multimodal Demonstrations [68.46458026983409]
We study out-of-dynamics imitation learning (OOD-IL), which relaxes the assumption to that the demonstrator and the imitator have the same state spaces.
OOD-IL enables imitation learning to utilize demonstrations from a wide range of demonstrators but introduces a new challenge.
We develop a better transferability measurement to tackle this newly-emerged challenge.
arXiv Detail & Related papers (2022-11-13T07:45:06Z) - Robustness of Demonstration-based Learning Under Limited Data Scenario [54.912936555876826]
Demonstration-based learning has shown great potential in stimulating pretrained language models' ability under limited data scenario.
Why such demonstrations are beneficial for the learning process remains unclear since there is no explicit alignment between the demonstrations and the predictions.
In this paper, we design pathological demonstrations by gradually removing intuitively useful information from the standard ones to take a deep dive of the robustness of demonstration-based sequence labeling.
arXiv Detail & Related papers (2022-10-19T16:15:04Z) - Extraneousness-Aware Imitation Learning [25.60384350984274]
Extraneousness-Aware Learning (EIL) learns visuomotor policies from third-person demonstrations with extraneous subsequences.
EIL learns action-conditioned observation embeddings in a self-supervised manner and retrieves task-relevant observations across visual demonstrations.
Experimental results show that EIL outperforms strong baselines and achieves comparable policies to those trained with perfect demonstration.
arXiv Detail & Related papers (2022-10-04T04:42:26Z) - Imitation Learning by Estimating Expertise of Demonstrators [92.20185160311036]
We show that unsupervised learning over demonstrator expertise can lead to a consistent boost in the performance of imitation learning algorithms.
We develop and optimize a joint model over a learned policy and expertise levels of the demonstrators.
We illustrate our findings on real-robotic continuous control tasks from Robomimic and discrete environments such as MiniGrid and chess.
arXiv Detail & Related papers (2022-02-02T21:23:19Z) - Learning Feasibility to Imitate Demonstrators with Different Dynamics [23.239058855103067]
The goal of learning from demonstrations is to learn a policy for an agent (imitator) by mimicking the behavior in the demonstrations.
We learn a feasibility metric that captures the likelihood of a demonstration being feasible by the imitator.
Our experiments on four simulated environments and on a real robot show that the policy learned with our approach achieves a higher expected return than prior works.
arXiv Detail & Related papers (2021-10-28T14:15:47Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
We propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations.
Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations.
arXiv Detail & Related papers (2020-06-14T06:03:06Z) - State-Only Imitation Learning for Dexterous Manipulation [63.03621861920732]
In this paper, we explore state-only imitation learning.
We train an inverse dynamics model and use it to predict actions for state-only demonstrations.
Our method performs on par with state-action approaches and considerably outperforms RL alone.
arXiv Detail & Related papers (2020-04-07T17:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.