Selection by Prediction with Conformal p-values
- URL: http://arxiv.org/abs/2210.01408v3
- Date: Sat, 27 May 2023 01:24:14 GMT
- Title: Selection by Prediction with Conformal p-values
- Authors: Ying Jin, Emmanuel J. Cand\`es
- Abstract summary: We study screening procedures that aim to select candidates whose unobserved outcomes exceed user-specified values.
We develop a method that wraps around any prediction model to produce a subset of candidates while controlling the proportion of falsely selected units.
- Score: 7.917044695538599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decision making or scientific discovery pipelines such as job hiring and drug
discovery often involve multiple stages: before any resource-intensive step,
there is often an initial screening that uses predictions from a machine
learning model to shortlist a few candidates from a large pool. We study
screening procedures that aim to select candidates whose unobserved outcomes
exceed user-specified values. We develop a method that wraps around any
prediction model to produce a subset of candidates while controlling the
proportion of falsely selected units. Building upon the conformal inference
framework, our method first constructs p-values that quantify the statistical
evidence for large outcomes; it then determines the shortlist by comparing the
p-values to a threshold introduced in the multiple testing literature. In many
cases, the procedure selects candidates whose predictions are above a
data-dependent threshold. Our theoretical guarantee holds under mild
exchangeability conditions on the samples, generalizing existing results on
multiple conformal p-values. We demonstrate the empirical performance of our
method via simulations, and apply it to job hiring and drug discovery datasets.
Related papers
- Optimizing Probabilistic Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
We propose a novel framework that enhances efficiency by first vectorizing the non-conformity scores with ranked samples and then optimizing the shape of the prediction set by varying the quantiles for samples at the same rank.
Our method delivers valid coverage while producing discontinuous and more efficient prediction sets, making it particularly suited for high-stakes applications.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
Generative models lack rigorous statistical guarantees for their outputs.
We propose a sequential conformal prediction method producing prediction sets that satisfy a rigorous statistical guarantee.
This guarantee states that with high probability, the prediction sets contain at least one admissible (or valid) example.
arXiv Detail & Related papers (2024-10-02T15:26:52Z) - Confidence on the Focal: Conformal Prediction with Selection-Conditional Coverage [6.010965256037659]
Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly drawn new test point with a prescribed probability.
In such cases, marginally valid conformal prediction intervals may not provide valid coverage for the focal unit(s) due to selection bias.
This paper presents a general framework for constructing a prediction set with finite-sample exact coverage conditional on the unit being selected.
arXiv Detail & Related papers (2024-03-06T17:18:24Z) - Large Language Models Are Not Robust Multiple Choice Selectors [117.72712117510953]
Multiple choice questions (MCQs) serve as a common yet important task format in the evaluation of large language models (LLMs)
This work shows that modern LLMs are vulnerable to option position changes due to their inherent "selection bias"
We propose a label-free, inference-time debiasing method, called PriDe, which separates the model's prior bias for option IDs from the overall prediction distribution.
arXiv Detail & Related papers (2023-09-07T17:44:56Z) - Generalization within in silico screening [19.58677466616286]
In silico screening uses predictive models to select a batch of compounds with favorable properties from a library for experimental validation.
By extending learning theory, we show that the selectivity of the selection policy can significantly impact generalization.
We show that generalization can be markedly enhanced when considering a model's ability to predict the fraction of desired outcomes in a batch.
arXiv Detail & Related papers (2023-07-18T16:01:01Z) - Conformal Language Modeling [61.94417935386489]
We propose a novel approach to conformal prediction for generative language models (LMs)
Standard conformal prediction produces prediction sets with rigorous, statistical guarantees.
We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation.
arXiv Detail & Related papers (2023-06-16T21:55:08Z) - Post-Selection Confidence Bounds for Prediction Performance [2.28438857884398]
In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks.
We propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set.
arXiv Detail & Related papers (2022-10-24T13:28:43Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
We study off-policy evaluation from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling.
We find the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one.
arXiv Detail & Related papers (2020-10-21T13:43:48Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
We design an online selective sampling approach that actively selects informative examples to label and outputs the best model with high probability at any round.
Our algorithm can be used for online prediction tasks for both adversarial and streams.
arXiv Detail & Related papers (2020-10-19T19:53:15Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.