論文の概要: Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching
- arxiv url: http://arxiv.org/abs/2210.01436v1
- Date: Tue, 4 Oct 2022 07:46:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 14:23:53.714714
- Title: Non-learning Stereo-aided Depth Completion under Mis-projection via
Selective Stereo Matching
- Title(参考訳): 選択ステレオマッチングによるミスプロジェクションによる非学習ステレオ支援深度補完
- Authors: Yasuhiro Yao, Ryoichi Ishikawa, Shingo Ando, Kana Kurata, Naoki Ito,
Jun Shimamura, and Takeshi Oishi
- Abstract要約: 一対のステレオ画像で導かれる光検出・測度センサ(LiDAR)を用いて捉えたスパース深度マップの非学習深度補完法を提案する。
提案手法は, 平均絶対誤差(MAE)を0.65倍に減らし, 従来よりも約2倍の精度で推定できることを示した。
- 参考スコア(独自算出の注目度): 0.5067618621449753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a non-learning depth completion method for a sparse depth map
captured using a light detection and ranging (LiDAR) sensor guided by a pair of
stereo images. Generally, conventional stereo-aided depth completion methods
have two limiations. (i) They assume the given sparse depth map is accurately
aligned to the input image, whereas the alignment is difficult to achieve in
practice. (ii) They have limited accuracy in the long range because the depth
is estimated by pixel disparity. To solve the abovementioned limitations, we
propose selective stereo matching (SSM) that searches the most appropriate
depth value for each image pixel from its neighborly projected LiDAR points
based on an energy minimization framework. This depth selection approach can
handle any type of mis-projection. Moreover, SSM has an advantage in terms of
long-range depth accuracy because it directly uses the LiDAR measurement rather
than the depth acquired from the stereo. SSM is a discrete process; thus, we
apply variational smoothing with binary anisotropic diffusion tensor (B-ADT) to
generate a continuous depth map while preserving depth discontinuity across
object boundaries. Experimentally, compared with the previous state-of-the-art
stereo-aided depth completion, the proposed method reduced the mean absolute
error (MAE) of the depth estimation to 0.65 times and demonstrated
approximately twice more accurate estimation in the long range. Moreover, under
various LiDAR-camera calibration errors, the proposed method reduced the depth
estimation MAE to 0.34-0.93 times from previous depth completion methods.
- Abstract(参考訳): 本論文では,一対のステレオ画像で誘導される光検出・測位(lidar)センサを用いて,スパース深度マップの非学習深度補完法を提案する。
一般に、従来の立体支援深度補完法は2つのリミネーションを持つ。
(i)与えられたスパース深度マップが入力画像と正確に一致していると仮定するが、実際にはアライメントは達成が困難である。
(ii)深さが画素差によって推定されるため、長範囲での精度が限られている。
上記の制限を解決するために,エネルギー最小化の枠組みに基づいて,近接するlidar点から画像画素の最も適切な深度値を探索する選択的ステレオマッチング(ssm)を提案する。
この深さ選択アプローチは、任意のタイプのミスプロジェクションを処理できる。
さらに、SSMはステレオから取得した深度ではなく、直接LiDAR測定を使用するため、長距離深度精度の点で有利である。
したがって、二元異方拡散テンソル(b-adt)を用いた変分平滑化を適用し、オブジェクト境界間の深さの不連続性を保ちながら連続深度マップを生成する。
実験により, 従来のステレオ支援深度処理と比較して, 提案手法では, 平均絶対誤差(MAE)を0.65倍に低減し, 長範囲での精度を約2倍に向上した。
さらに, 種々のLiDARカメラキャリブレーション誤差により, 従来の深度補正法から深度推定MAEを0.34-0.93倍に削減した。
関連論文リスト
- Adaptive Stereo Depth Estimation with Multi-Spectral Images Across All Lighting Conditions [58.88917836512819]
本稿では,立体深度推定を取り入れた新しいフレームワークを提案し,正確な幾何学的制約を強制する。
照明の劣化がステレオマッチングに与える影響を軽減するために,劣化マスキングを導入する。
提案手法は,Multi-Spectral Stereo(MS2)データセット上でのSOTA(State-of-the-art)性能を実現する。
論文 参考訳(メタデータ) (2024-11-06T03:30:46Z) - ARAI-MVSNet: A multi-view stereo depth estimation network with adaptive
depth range and depth interval [19.28042366225802]
マルチビューステレオ(MVS)は幾何学的コンピュータビジョンの基本的な問題である。
適応的な全画素深度範囲と深度間隔を実現するために,新しい多段粗大化フレームワークを提案する。
我々のモデルは最先端の性能を達成し、競争一般化能力を得る。
論文 参考訳(メタデータ) (2023-08-17T14:52:11Z) - DiffusionDepth: Diffusion Denoising Approach for Monocular Depth
Estimation [23.22005119986485]
DiffusionDepthは、単分子深度推定をデノナイズ拡散過程として再構成する新しいアプローチである。
ランダムな深度分布をモノラルな視覚条件のガイダンスで深度マップに分解する反復的復調過程を学習する。
KITTIとNYU-Depth-V2データセットの実験結果は、シンプルだが効率的な拡散アプローチが、許容可能な推論時間を持つ屋内および屋外の両方のシナリオで最先端のパフォーマンスに達することを示唆している。
論文 参考訳(メタデータ) (2023-03-09T03:48:24Z) - Probabilistic Volumetric Fusion for Dense Monocular SLAM [33.156523309257786]
本研究では,高密度単分子SLAMと高速不確実性伝搬を利用して3次元シーンを再構成する手法を提案する。
提案手法は, 極めてノイズの多い深度推定値に対して頑健でありながら, 密集度, 精度, リアルタイムにシーンを3次元再構成することができる。
その結果,本手法は単分子SLAMからの直接拡散深度よりも92%精度が向上し,最大90%の精度向上が得られた。
論文 参考訳(メタデータ) (2022-10-03T23:53:35Z) - Distortion-Tolerant Monocular Depth Estimation On Omnidirectional Images
Using Dual-cubemap [37.82642960470551]
デュアルキューブマップを用いた歪み耐性全方位深度推定アルゴリズムを提案する。
DCDEモジュールでは、正確なNFoV深度を推定するために、回転に基づくデュアルキューブマップモデルを提案する。
その後、境界修正モジュールは不連続な境界を滑らかにするよう設計され、これは正確かつ視覚的に連続する全方位深さに寄与する。
論文 参考訳(メタデータ) (2022-03-18T04:20:36Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
RGB-D Salient Object Detection (SOD) のための新しいマルチタスク・マルチモーダルフィルタトランス (MMFT) ネットワークを提案する。
具体的には、深度推定、健全な物体検出、輪郭推定の3つの相補的なタスクを統合する。マルチタスク機構は、タスク認識の特徴を補助タスクから学習するためのモデルを促進する。
実験の結果、複数のデータセット上での深度に基づくRGB-D SOD法をはるかに上回るだけでなく、高品質の深度マップと塩分濃度を同時に正確に予測できることがわかった。
論文 参考訳(メタデータ) (2022-03-09T17:20:18Z) - Weakly-Supervised Monocular Depth Estimationwith Resolution-Mismatched
Data [73.9872931307401]
単眼深度推定ネットワークをトレーニングするための弱教師付きフレームワークを提案する。
提案フレームワークは, 共有重量単分子深度推定ネットワークと蒸留用深度再構成ネットワークから構成される。
実験結果から,本手法は教師なし・半教師付き学習ベース方式よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2021-09-23T18:04:12Z) - Deep Two-View Structure-from-Motion Revisited [83.93809929963969]
2次元構造移動(SfM)は3次元再構成と視覚SLAMの基礎となる。
古典パイプラインの適切性を活用することで,深部2視点sfmの問題を再検討することを提案する。
本手法は,1)2つのフレーム間の密対応を予測する光フロー推定ネットワーク,2)2次元光フロー対応から相対カメラポーズを計算する正規化ポーズ推定モジュール,3)エピポーラ幾何を利用して探索空間を縮小し,密対応を洗練し,相対深度マップを推定するスケール不変深さ推定ネットワークからなる。
論文 参考訳(メタデータ) (2021-04-01T15:31:20Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
本稿では,単眼映像からカメラのカメラポーズと密集した深度マップを推定するアルゴリズムを提案する。
本手法は,(1)低周波大規模アライメントのためのフレキシブルな変形-スプラインと(2)細部奥行き詳細の高周波アライメントのための幾何認識深度フィルタリングとを組み合わせた手法である。
従来の手法とは対照的に, カメラのポーズを入力として必要とせず, かなりの音量, 揺動, 動きのぼやき, 転がりシャッター変形を含む携帯のハンドヘルドキャプチャに頑健な再構成を実現する。
論文 参考訳(メタデータ) (2020-12-10T18:59:48Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
ステレオマッチングのための新しいダイレクトディープス学習ネットワーク(DDL-Net)が設計されている。
DDL-Netは、粗度推定段階と適応勾配深度補正段階の2段階からなる。
我々は,DDL-NetがSceneFlowデータセットで25%,DrivingStereoデータセットで12%の平均的な改善を実現していることを示す。
論文 参考訳(メタデータ) (2020-12-10T10:33:57Z) - Balanced Depth Completion between Dense Depth Inference and Sparse Range
Measurements via KISS-GP [14.158132769768578]
密集した正確な深度マップを推定することは、自動運転とロボット工学にとって重要な要件である。
近年のディープラーニングの進歩により、単一の画像から全解像度での深度推定が可能になった。
この驚くべき結果にもかかわらず、多くのディープラーニングベースの単眼深度推定アルゴリズムは、その精度をメーターレベルの推定誤差に保たない。
論文 参考訳(メタデータ) (2020-08-12T08:07:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。