論文の概要: Enhancing Spatiotemporal Prediction Model using Modular Design and
Beyond
- arxiv url: http://arxiv.org/abs/2210.01500v1
- Date: Tue, 4 Oct 2022 10:09:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 13:22:00.512932
- Title: Enhancing Spatiotemporal Prediction Model using Modular Design and
Beyond
- Title(参考訳): モジュール設計による時空間予測モデルの強化
- Authors: Haoyu Pan, Hao Wu, Tan Yang
- Abstract要約: 時間と空間の両方でシーケンスを予測することは困難である。
主流の方法は、同時に時間構造と空間構造をモデル化することである。
配列モデルを空間エンコーダデコーダと予測器の2つのモジュールに組み込むモジュール設計を提案する。
- 参考スコア(独自算出の注目度): 2.323220706791067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive learning uses a known state to generate a future state over a
period of time. It is a challenging task to predict spatiotemporal sequence
because the spatiotemporal sequence varies both in time and space. The
mainstream method is to model spatial and temporal structures at the same time
using RNN-based or transformer-based architecture, and then generates future
data by using learned experience in the way of auto-regressive. The method of
learning spatial and temporal features simultaneously brings a lot of
parameters to the model, which makes the model difficult to be convergent. In
this paper, a modular design is proposed, which decomposes spatiotemporal
sequence model into two modules: a spatial encoder-decoder and a predictor.
These two modules can extract spatial features and predict future data
respectively. The spatial encoder-decoder maps the data into a latent embedding
space and generates data from the latent space while the predictor forecasts
future embedding from past. By applying the design to the current research and
performing experiments on KTH-Action and MovingMNIST datasets, we both improve
computational performance and obtain state-of-the-art results.
- Abstract(参考訳): 予測学習は、ある期間にわたって将来の状態を生成するために既知の状態を使用する。
時空間のシーケンスは時間と空間の両方で異なるため、時空間のシーケンスを予測するのは困難である。
主流となる手法は、RNNベースまたはトランスフォーマーベースアーキテクチャを用いて、空間構造と時間構造を同時にモデル化し、自動回帰の方法で学習した経験を用いて将来のデータを生成することである。
空間的特徴と時間的特徴を同時に学習する方法は、モデルに多くのパラメータをもたらすため、モデルを収束させることが困難になる。
本稿では,空間エンコーダ・デコーダと予測器の2つのモジュールに時空間系列モデルを分解するモジュール設計を提案する。
これら2つのモジュールは空間的特徴を抽出し,それぞれ将来のデータを予測する。
空間エンコーダ・デコーダはデータを潜在埋め込み空間にマッピングし、潜在空間からデータを生成し、予測者は過去から将来の埋め込みを予測する。
この設計をkth-actionとmovingmnistデータセットの現在の研究に適用し,計算性能の向上と最先端の結果を得る。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - Spatial-Temporal Large Language Model for Traffic Prediction [21.69991612610926]
交通予測のための時空間大言語モデル(ST-LLM)を提案する。
ST-LLMでは,各位置の時間ステップをトークンとして定義し,空間的位置とグローバルな時間的パターンを学習するための空間的時間的埋め込みを設計する。
実トラフィックデータセットの実験において、ST-LLMは最先端のモデルより優れた空間時空間学習器である。
論文 参考訳(メタデータ) (2024-01-18T17:03:59Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - ARFA: An Asymmetric Receptive Field Autoencoder Model for Spatiotemporal
Prediction [55.30913411696375]
本稿では,非対称な受容場オートエンコーダ (ARFA) モデルを提案する。
エンコーダでは,大域的時間的特徴抽出のための大規模なカーネルモジュールを提案し,デコーダでは局所的時間的再構成のための小さなカーネルモジュールを開発する。
降水予測のための大規模レーダエコーデータセットであるRainBenchを構築し,その領域における気象データの不足に対処する。
論文 参考訳(メタデータ) (2023-09-01T07:55:53Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
状態空間ODEに従って進化する潜伏変数を持つ列の生成モデルLS4を提案する。
近年の深層状態空間モデル(S4)に着想を得て,LS4の畳み込み表現を利用して高速化を実現する。
LS4は, 実世界のデータセット上での限界分布, 分類, 予測スコアにおいて, 従来の連続時間生成モデルよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-24T15:17:42Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Simple Video Generation using Neural ODEs [9.303957136142293]
我々は、潜在空間の将来を予測する潜在変数モデルを学び、ピクセルに投影する。
1桁と2桁の移動MNISTデータセットにおける将来のフレーム予測のタスクにおいて,提案手法が有望な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-09-07T19:03:33Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
我々は,より効率的かつ正確な軌道予測を支援するために,新しいCNNベースの時空間グラフフレームワークGraphCNTを提案する。
従来のモデルとは対照的に,我々のモデルにおける空間的・時間的モデリングは各局所時間ウィンドウ内で計算される。
本モデルは,様々な軌道予測ベンチマークデータセットの最先端モデルと比較して,効率と精度の両面で優れた性能を実現する。
論文 参考訳(メタデータ) (2020-03-16T12:56:12Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。