Knowledge Unlearning for Mitigating Privacy Risks in Language Models
- URL: http://arxiv.org/abs/2210.01504v1
- Date: Tue, 4 Oct 2022 10:18:11 GMT
- Title: Knowledge Unlearning for Mitigating Privacy Risks in Language Models
- Authors: Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee,
Lajanugen Logeswaran, Minjoon Seo
- Abstract summary: We propose knowledge unlearning as an alternative method to reduce privacy risks for language models.
We show that simply applying the unlikelihood training objective to target token sequences is effective at forgetting them.
We show that unlearning can give a stronger empirical privacy guarantee in scenarios where the data vulnerable to extraction attacks are known a priori.
- Score: 31.322818016245087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained Language Models (LMs) memorize a vast amount of knowledge during
initial pretraining, including information that may violate the privacy of
personal lives and identities. Previous work addressing privacy issues for
language models has mostly focused on data preprocessing and differential
privacy methods, both requiring re-training the underlying LM. We propose
knowledge unlearning as an alternative method to reduce privacy risks for LMs
post hoc. We show that simply applying the unlikelihood training objective to
target token sequences is effective at forgetting them with little to no
degradation of general language modeling performances; it sometimes even
substantially improves the underlying LM with just a few iterations. We also
find that sequential unlearning is better than trying to unlearn all the data
at once and that unlearning is highly dependent on which kind of data (domain)
is forgotten. By showing comparisons with a previous data preprocessing method
known to mitigate privacy risks for LMs, we show that unlearning can give a
stronger empirical privacy guarantee in scenarios where the data vulnerable to
extraction attacks are known a priori while being orders of magnitude more
computationally efficient. We release the code and dataset needed to replicate
our results at https://github.com/joeljang/knowledge-unlearning .
Related papers
- CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
We propose a novel amortized unlearning approach using codebook features and Sparse Autoencoders (SAEs)
By leveraging a bottleneck to decompose the activation space and regulate information flow, our method efficiently unlearns targeted information while preserving the model's performance on unrelated data.
arXiv Detail & Related papers (2024-10-08T10:26:22Z) - Unlocking Memorization in Large Language Models with Dynamic Soft Prompting [66.54460367290146]
Large language models (LLMs) have revolutionized natural language processing (NLP) tasks such as summarization, question answering, and translation.
LLMs pose significant security risks due to their tendency to memorize training data, leading to potential privacy breaches and copyright infringement.
We propose a novel method for estimating LLM memorization using dynamic, prefix-dependent soft prompts.
arXiv Detail & Related papers (2024-09-20T18:56:32Z) - MUSE: Machine Unlearning Six-Way Evaluation for Language Models [109.76505405962783]
Language models (LMs) are trained on vast amounts of text data, which may include private and copyrighted content.
We propose MUSE, a comprehensive machine unlearning evaluation benchmark.
We benchmark how effectively eight popular unlearning algorithms can unlearn Harry Potter books and news articles.
arXiv Detail & Related papers (2024-07-08T23:47:29Z) - Learn When (not) to Trust Language Models: A Privacy-Centric Adaptive Model-Aware Approach [23.34505448257966]
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks.
Previous work has proposed to determine when to do/skip the retrieval in a data-aware manner by analyzing the LLMs' pretraining data.
These data-aware methods pose privacy risks and memory limitations, especially when requiring access to sensitive or extensive pretraining data.
We hypothesize that token embeddings are able to capture the model's intrinsic knowledge, which offers a safer and more straightforward way to judge the need for retrieval without the privacy risks associated with accessing pre-training data.
arXiv Detail & Related papers (2024-04-04T15:21:22Z) - TOFU: A Task of Fictitious Unlearning for LLMs [99.92305790945507]
Large language models trained on massive corpora of data from the web can reproduce sensitive or private data raising both legal and ethical concerns.
Unlearning, or tuning models to forget information present in their training data, provides us with a way to protect private data after training.
We present TOFU, a benchmark aimed at helping deepen our understanding of unlearning.
arXiv Detail & Related papers (2024-01-11T18:57:12Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Privacy Implications of Retrieval-Based Language Models [26.87950501433784]
We present the first study of privacy risks in retrieval-based LMs, particularly $k$NN-LMs.
We find that $k$NN-LMs are more susceptible to leaking private information from their private datastore than parametric models.
arXiv Detail & Related papers (2023-05-24T08:37:27Z) - Mitigating Approximate Memorization in Language Models via Dissimilarity
Learned Policy [0.0]
Large Language models (LLMs) are trained on large amounts of data.
LLMs showed to memorize parts of the training data and emit those data verbatim when an adversary prompts appropriately.
arXiv Detail & Related papers (2023-05-02T15:53:28Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.