論文の概要: Anatomically constrained CT image translation for heterogeneous blood
vessel segmentation
- arxiv url: http://arxiv.org/abs/2210.01713v1
- Date: Tue, 4 Oct 2022 16:14:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 14:08:36.979935
- Title: Anatomically constrained CT image translation for heterogeneous blood
vessel segmentation
- Title(参考訳): 異種血管分割に対する解剖学的拘束型ct画像変換
- Authors: Giammarco La Barbera, Haithem Boussaid, Francesco Maso, Sabine
Sarnacki, Laurence Rouet, Pietro Gori, Isabelle Bloch
- Abstract要約: 造影CT(ceCT)画像の解剖学的構造は, 造影剤拡散の変動により, 分画が困難になる可能性がある。
放射線線量を制限するために、生成モデルは1つのモダリティを合成するために用いられる。
CycleGANは、ペアデータの必要性を軽減するため、特に注目を集めている。
本稿では,高忠実度画像を生成するためのCycleGANの拡張について述べる。
- 参考スコア(独自算出の注目度): 3.88838725116957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anatomical structures such as blood vessels in contrast-enhanced CT (ceCT)
images can be challenging to segment due to the variability in contrast medium
diffusion. The combined use of ceCT and contrast-free (CT) CT images can
improve the segmentation performances, but at the cost of a double radiation
exposure. To limit the radiation dose, generative models could be used to
synthesize one modality, instead of acquiring it. The CycleGAN approach has
recently attracted particular attention because it alleviates the need for
paired data that are difficult to obtain. Despite the great performances
demonstrated in the literature, limitations still remain when dealing with 3D
volumes generated slice by slice from unpaired datasets with different fields
of view. We present an extension of CycleGAN to generate high fidelity images,
with good structural consistency, in this context. We leverage anatomical
constraints and automatic region of interest selection by adapting the
Self-Supervised Body Regressor. These constraints enforce anatomical
consistency and allow feeding anatomically-paired input images to the
algorithm. Results show qualitative and quantitative improvements, compared to
stateof-the-art methods, on the translation task between ceCT and CT images
(and vice versa).
- Abstract(参考訳): 造影CT(ceCT)画像における血管などの解剖学的構造は, 造影剤拡散の変動により, 分画が困難である。
cectとコントラストフリーct画像の併用により、セグメンテーション性能は向上するが、二重放射線被曝のコストは高くなる。
放射線線量を制限するために、生成モデルを使って1つのモダリティを合成することができる。
CycleGANアプローチは、入手が困難なペアデータの必要性を軽減するため、最近特に注目を集めている。
文献で実証された優れた性能にもかかわらず、異なる視野の異なるデータセットからスライスされた3dボリュームを扱う場合、制限は依然として残る。
我々は,この文脈において,高忠実度画像を生成するためのcycleganの拡張を提案する。
自己監督身体回帰器を適応させることにより、解剖学的制約と利子選択の自動領域を活用する。
これらの制約は解剖学的一貫性を強制し、解剖学的にペアリングされた入力画像をアルゴリズムに供給することを可能にする。
その結果,CT画像とCT画像の翻訳作業において,最先端手法と比較して質的,定量的な改善が見られた。
関連論文リスト
- Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
本研究は, 連続断面光コヒーレンストモグラフィー画像における神経血管セグメンテーションのための合成エンジンについて述べる。
提案手法は,ラベル合成とラベル・ツー・イメージ変換の2段階からなる。
前者の有効性を,より現実的なトレーニングラベルの集合と比較し,後者を合成ノイズと人工物モデルのアブレーション研究により実証した。
論文 参考訳(メタデータ) (2024-07-01T16:09:07Z) - Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning [15.234393268111845]
非造影CT(non-contrast CT)は画像のコントラストと解剖学的視認性を低下させ、診断の不確実性を増大させる可能性がある。
医用画像翻訳のための潜時拡散モデルに基づく新しいシンプレティック生成モデル(S$2$LDM)を提案する。
S$2$LDMは、シンプレティックエンコーディングと拡散を通じて、異なるモーダル画像の類似性を高め、潜伏空間における重複情報を促進し、対照的に強調された領域でより詳細な医療画像を生成する。
論文 参考訳(メタデータ) (2024-06-20T03:54:41Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram
Restoration in Sparse-View CT Reconstruction [13.358197688568463]
撮像過程におけるヨウ素の放射線は 不可逆的な損傷を引き起こす
スパースビューCT画像に現れるアーティファクトを緩和する反復モデルが提案されているが,コストが高すぎる。
textbfDual-textbfDomain textbfDuDoTransを提案する。
論文 参考訳(メタデータ) (2021-11-21T10:41:07Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Bone Segmentation in Contrast Enhanced Whole-Body Computed Tomography [2.752817022620644]
本稿では,低線量造影による全身CTスキャンから骨骨髄領域を分離する新しい前処理技術を用いたU-netアーキテクチャについて概説する。
骨とコントラスト染料の差別化には, 適切な前処理が重要であること, 限られたデータで優れた結果が得られることを実証した。
論文 参考訳(メタデータ) (2020-08-12T10:48:38Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。