Entanglement of Bipartite Gaussian States: a Simple Criterion and its
Geometric Interpretation
- URL: http://arxiv.org/abs/2210.01735v2
- Date: Sat, 15 Oct 2022 17:05:20 GMT
- Title: Entanglement of Bipartite Gaussian States: a Simple Criterion and its
Geometric Interpretation
- Authors: Maurice de Gosson
- Abstract summary: We propose a simple condition for a bosonic continuous variable bipartite Gaussian mixed quantum state to be separable.
The main tool in our construction is the observation, proved in previous work, that the Wigner transform is covariant only under symplectic or antisymplectic linear transformations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Werner and Wolf have proven in Phys. Rev. Lett. 86(16) (2001) a very elegant
necessary and sufficient condition for a bosonic continuous variable bipartite
Gaussian mixed quantum state to be separable. This condition is, however,
difficult to implement in practice. In the present Letter, we propose a simpler
condition which only involves the calculation of the symplectic matrix in the
Williamson diagonalization of the covariance matrix of the state under
consideration. The main tool in our construction is the observation, proved in
previous work, that the Wigner transform is covariant only under symplectic or
antisymplectic linear transformations. We also give a geometric interpretation
of our condition in terms of the orthogonal projections of "quantum blobs"..
Related papers
- Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Covariant operator bases for continuous variables [0.0]
We work out an alternative basis consisting of monomials on the basic observables, with the crucial property of behaving well under symplectic transformations.
Given the density matrix of a state, the expansion coefficients in that basis constitute the multipoles, which describe the state in a canonically covariant form that is both concise and explicit.
arXiv Detail & Related papers (2023-09-18T18:00:15Z) - Symplectic Polar Duality, Quantum Blobs, and Generalized Gaussians [0.0]
We show that quantum blobs are the smallest symplectic invariant regions of the phase space compatible with the uncertainty principle in its strong Robertson--Schr"odinger form.
We show that these phase space units can be characterized by a simple condition of reflexivity using polar duality, thus improving previous results.
arXiv Detail & Related papers (2022-06-13T17:32:05Z) - Fermionic approach to variational quantum simulation of Kitaev spin
models [50.92854230325576]
Kitaev spin models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a novel variational ansatz that takes advantage of this fermionic representation.
We also comment on the implications of our results for simulating non-Abelian anyons on quantum computers.
arXiv Detail & Related papers (2022-04-11T18:00:01Z) - Equivariant relative submajorization [0.0]
We study a generalization of relative submajorization that compares pairs of positive operators on representation spaces of some fixed group.
We find a sufficient condition for the existence of catalytic transformations and a characterization of an symmetric relaxation of the relation.
arXiv Detail & Related papers (2021-08-30T13:13:21Z) - Gaussian Continuous-Variable Isotropic State [0.0]
We study the non-classical correlations contained in a two-mode Gaussian analogue of an isotropic state.
It turns out that it exhibits an analogous phenomenology as the finite-dimensional two-qubit isotropic state.
arXiv Detail & Related papers (2021-05-07T09:45:15Z) - Jordan-Wigner transformation and qubits with nontrivial exchange rule [91.3755431537592]
Well-known (spinless) fermionic qubits may need more subtle consideration in comparison with usual (spinful) fermions.
considered method has some relation with construction of super-spaces, but it has some differences with standard definition of supersymmety sometimes used for generalizations of qubit model.
arXiv Detail & Related papers (2021-03-08T09:31:03Z) - Group Theoretical Approach to Pseudo-Hermitian Quantum Mechanics with
Lorentz Covariance and $c \rightarrow \infty $ Limit [0.0]
The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation.
The key feature of the formulation is that it is not unitary but pseudo-unitary, exactly in the same sense as the Minkowski spacetime representation.
Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product.
arXiv Detail & Related papers (2020-09-12T23:48:52Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.