論文の概要: ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training
- arxiv url: http://arxiv.org/abs/2210.01738v3
- Date: Fri, 10 Nov 2023 10:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 18:40:52.413685
- Title: ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training
- Title(参考訳): アシフ氏:連結データはトレーニングなしでユニモーダルモデルをマルチモーダルに変える
- Authors: Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella,
Emanuele Rodol\`a, Francesco Locatello
- Abstract要約: 単一のドメインエンコーダとより少ない画像テキストペアを用いて、トレーニングを一切行わずに共通空間を作成することができることを示す。
私たちのモデルにはユニークな特性があり、特に注目すべきは、新しいバージョンをデプロイして、更新されたトレーニングサンプルを数秒で実行できることです。
- 参考スコア(独自算出の注目度): 29.240131406803794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CLIP proved that aligning visual and language spaces is key to solving many
vision tasks without explicit training, but required to train image and text
encoders from scratch on a huge dataset. LiT improved this by only training the
text encoder and using a pre-trained vision network. In this paper, we show
that a common space can be created without any training at all, using
single-domain encoders (trained with or without supervision) and a much smaller
amount of image-text pairs. Furthermore, our model has unique properties. Most
notably, deploying a new version with updated training samples can be done in a
matter of seconds. Additionally, the representations in the common space are
easily interpretable as every dimension corresponds to the similarity of the
input to a unique image-text pair in the multimodal dataset. Experiments on
standard zero-shot visual benchmarks demonstrate the typical transfer ability
of image-text models. Overall, our method represents a simple yet surprisingly
strong baseline for foundation multimodal models, raising important questions
on their data efficiency and on the role of retrieval in machine learning.
- Abstract(参考訳): CLIPは、視覚と言語空間の整合性は、明示的なトレーニングなしに多くの視覚タスクを解決する上で鍵となるが、巨大なデータセットで画像とテキストエンコーダをスクラッチからトレーニングする必要があることを証明した。
LiTはテキストエンコーダをトレーニングし、事前訓練されたビジョンネットワークを使用することでこれを改善した。
本稿では、単一ドメインエンコーダ(監督の有無にかかわらず)と画像とテキストのペアを全く訓練せずに共有空間を作成することができることを示す。
さらに,モデルにはユニークな特性がある。
最も注目すべきは、トレーニングサンプルが更新された新バージョンのデプロイを数秒で行えることだ。
さらに、共通空間における表現は、すべての次元が、マルチモーダルデータセットにおけるユニークな画像テキスト対への入力の類似性に対応するため、容易に解釈できる。
標準ゼロショットビジュアルベンチマークの実験は、画像テキストモデルの典型的な転送能力を示している。
全体として,本手法は,基礎的マルチモーダルモデルにおいて,シンプルながら驚くほど強力なベースラインであり,データ効率や機械学習における検索の役割について重要な疑問を提起する。
関連論文リスト
- VISTA: Visualized Text Embedding For Universal Multi-Modal Retrieval [10.603148564713518]
汎用マルチモーダル検索のための新しい埋め込みモデルVISTAを提案する。
画像理解機能を備えた強力なテキストエンコーダを拡張するフレキシブルアーキテクチャを導入する。
第2に,埋め込みモデルのトレーニングを容易にするために,高品質な合成画像テキストを提供する2つのデータ生成戦略を開発する。
論文 参考訳(メタデータ) (2024-06-06T17:37:47Z) - EVE: Efficient Vision-Language Pre-training with Masked Prediction and
Modality-Aware MoE [66.48689706116808]
効率的なビジョン・ランガグ(Efficient Vision-languagE)は、1つの統合された事前訓練タスクによってのみ事前訓練された1つの統合マルチモーダルトランスである。
Eveは、Modality-aware sparse Mixture-of-Expertsと統合された共有トランスフォーマーネットワーク内の視覚と言語をエンコードする。
Eveは、視覚的質問応答、視覚的推論、画像テキスト検索など、様々な視覚言語下流タスクにおける最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-08-23T07:36:30Z) - MoMo: A shared encoder Model for text, image and multi-Modal
representations [4.812718493682455]
本稿では,複数の視覚,言語,マルチモーダルベンチマークにおいて,強力な結果が得られる自己教師付き共有エンコーダモデルを提案する。
我々は、すべてのエンコーダ層がテキストと画像のモダリティの両方を処理する単一のトランスフォーマーを使用する。
論文 参考訳(メタデータ) (2023-04-11T22:26:10Z) - Language Quantized AutoEncoders: Towards Unsupervised Text-Image
Alignment [81.73717488887938]
Language-Quantized AutoEncoder (LQAE)は、事前訓練された言語モデルを利用して、教師なしの方法でテキストイメージデータを整列することを学ぶ。
LQAEは類似した画像を類似したテキストトークンのクラスタで表現することを学び、一致したテキストイメージペアを使わずにこれら2つのモダリティを整列させる。
これにより、大きな言語モデル(例えばGPT-3)による少数ショット画像の分類や、BERTテキストの特徴に基づく画像の線形分類が可能になる。
論文 参考訳(メタデータ) (2023-02-02T06:38:44Z) - Vision Learners Meet Web Image-Text Pairs [32.36188289972377]
本研究では,ノイズの多いWebソースと画像テキストのペアデータに対する自己教師付き事前学習について検討する。
マスク付きトレーニング目標を用いたシングルモーダルトレーニングや,画像テキストコンストラシティブトレーニングを用いたマルチモーダルトレーニングなど,さまざまな手法を比較した。
我々は、スケーラブルなWebソース画像テキストデータから学習する新しいビジュアル表現事前学習手法MUlti-modal Generator(MUG)を提案する。
論文 参考訳(メタデータ) (2023-01-17T18:53:24Z) - Multimodal Masked Autoencoders Learn Transferable Representations [127.35955819874063]
単純でスケーラブルなネットワークアーキテクチャであるM3AE(Multimodal Masked Autoencoder)を提案する。
M3AEは、マスク付きトークン予測により、視覚と言語データの両方の統一エンコーダを学習する。
我々は,大規模な画像テキストデータセット上で訓練されたM3AEについて実証的研究を行い,M3AEが下流タスクによく伝達される一般化可能な表現を学習できることを見出した。
論文 参考訳(メタデータ) (2022-05-27T19:09:42Z) - Multimodal Knowledge Alignment with Reinforcement Learning [103.68816413817372]
ESPERは言語のみのゼロショットモデルを拡張して、画像や音声のキャプションといったマルチモーダルタスクを未確認にする。
我々の重要な新規性は、強化学習を使用することで、直接監督することなく、多モーダル入力を言語モデル世代に整列させることである。
実験の結果、ESPERはベースラインと様々なゼロショットタスクの事前作業より優れていることが示された。
論文 参考訳(メタデータ) (2022-05-25T10:12:17Z) - Multimodal Semi-Supervised Learning for Text Recognition [10.33262222726707]
本稿では,モダリティ学習の各段階におけるラベルなしデータを活用する多モーダルテキスト認識器(SemiMTR)について半教師付き学習を行う。
我々のアルゴリズムは、教師あり学習と自己教師あり学習を一体化する一段階の訓練を通して、視覚モデルを事前訓練することから始まる。
新たなセットアップでは、各モダリティに個別に一貫性が強制される。
論文 参考訳(メタデータ) (2022-05-08T13:55:30Z) - Unsupervised Vision-and-Language Pre-training via Retrieval-based
Multi-Granular Alignment [66.77841319057299]
非並列テキストと画像のための教師なしビジョン・アンド・ランゲージ事前学習カリキュラムを提案する。
まず、検索に基づく手法を用いて、弱整列画像テキストコーパスを構築し、次に、複数粒状アライメントの事前学習タスクを適用する。
包括的なアブレーション研究は、それぞれの粒度がより強力な事前学習モデルを学ぶのに役立つことを示している。
論文 参考訳(メタデータ) (2022-03-01T05:34:01Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
高価なフィルタリングや後処理のステップを使わずに得られる10億以上の画像アルトテキストペアのノイズの多いデータセットを活用します。
単純なデュアルエンコーダアーキテクチャは、画像とテキストペアの視覚的および言語的表現を、対照的な損失を使って整列させることを学ぶ。
コーパスのスケールはノイズを補うことができ、そのような単純な学習方式であっても最先端の表現に繋がることを示す。
論文 参考訳(メタデータ) (2021-02-11T10:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。