Multi-Agent Chance-Constrained Stochastic Shortest Path with Application
to Risk-Aware Intelligent Intersection
- URL: http://arxiv.org/abs/2210.01766v1
- Date: Mon, 3 Oct 2022 06:49:23 GMT
- Title: Multi-Agent Chance-Constrained Stochastic Shortest Path with Application
to Risk-Aware Intelligent Intersection
- Authors: Majid Khonji, Rashid Alyassi, Wolfgang Merkt, Areg Karapetyan, Xin
Huang, Sungkweon Hong, Jorge Dias, Brian Williams
- Abstract summary: A formidable challenge for existing automated intersections lies in detecting and reasoning about uncertainty from the operating environment and human-driven vehicles.
We propose a risk-aware intelligent intersection system for autonomous vehicles (AVs) as well as human-driven vehicles (HVs)
- Score: 15.149982804527182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In transportation networks, where traffic lights have traditionally been used
for vehicle coordination, intersections act as natural bottlenecks. A
formidable challenge for existing automated intersections lies in detecting and
reasoning about uncertainty from the operating environment and human-driven
vehicles. In this paper, we propose a risk-aware intelligent intersection
system for autonomous vehicles (AVs) as well as human-driven vehicles (HVs). We
cast the problem as a novel class of Multi-agent Chance-Constrained Stochastic
Shortest Path (MCC-SSP) problems and devise an exact Integer Linear Programming
(ILP) formulation that is scalable in the number of agents' interaction points
(e.g., potential collision points at the intersection). In particular, when the
number of agents within an interaction point is small, which is often the case
in intersections, the ILP has a polynomial number of variables and constraints.
To further improve the running time performance, we show that the collision
risk computation can be performed offline. Additionally, a trajectory
optimization workflow is provided to generate risk-aware trajectories for any
given intersection. The proposed framework is implemented in CARLA simulator
and evaluated under a fully autonomous intersection with AVs only as well as in
a hybrid setup with a signalized intersection for HVs and an intelligent scheme
for AVs. As verified via simulations, the featured approach improves
intersection's efficiency by up to $200\%$ while also conforming to the
specified tunable risk threshold.
Related papers
- Multi-agent Path Finding for Mixed Autonomy Traffic Coordination [7.857093164418706]
We propose a Behavior Prediction Kinematic Priority Based Search (BK-PBS) to forecast HDV responses to CAV maneuvers.
Our work is directly applicable to many scenarios of multi-human multi-robot coordination.
arXiv Detail & Related papers (2024-09-05T19:37:01Z) - Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
arXiv Detail & Related papers (2024-04-22T18:45:40Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
This paper develops a learning-based algorithm to deal with complex intersections with mixed traffic flows.
We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation.
Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems.
arXiv Detail & Related papers (2021-08-30T07:55:32Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Jamming-Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning [1.2330326247154968]
Unmanned aerial vehicles (UAVs) are expected to be an integral part of wireless networks.
In this paper, we aim to find collision-free paths for multiple cellular-connected UAVs.
We propose an offline temporal difference (TD) learning algorithm with online signal-to-interference-plus-noise ratio mapping to solve the problem.
arXiv Detail & Related papers (2021-04-09T16:52:33Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning [21.500697097095408]
Planning safe trajectories under uncertain and dynamic conditions makes the autonomous driving problem significantly complex.
Current sampling-based methods such as Rapidly Exploring Random Trees (RRTs) are not ideal for this problem because of the high computational cost.
We propose a Hierarchical Reinforcement Learning structure combined with a Proportional-Integral-Derivative (PID) controller for trajectory planning.
arXiv Detail & Related papers (2020-11-09T20:49:54Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.