Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections
- URL: http://arxiv.org/abs/2404.14523v1
- Date: Mon, 22 Apr 2024 18:45:40 GMT
- Title: Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections
- Authors: Dinesh Cyril Selvaraj, Christian Vitale, Tania Panayiotou, Panayiotis Kolios, Carla Fabiana Chiasserini, Georgios Ellinas,
- Abstract summary: We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
- Score: 12.812518632907771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intersection crossing represents one of the most dangerous sections of the road infrastructure and Connected Vehicles (CVs) can serve as a revolutionary solution to the problem. In this work, we present a novel framework that detects preemptively collisions at urban crossroads, exploiting the Multi-access Edge Computing (MEC) platform of 5G networks. At the MEC, an Intersection Manager (IM) collects information from both vehicles and the road infrastructure to create a holistic view of the area of interest. Based on the historical data collected, the IM leverages the capabilities of an encoder-decoder recurrent neural network to predict, with high accuracy, the future vehicles' trajectories. As, however, accuracy is not a sufficient measure of how much we can trust a model, trajectory predictions are additionally associated with a measure of uncertainty towards confident collision forecasting and avoidance. Hence, contrary to any other approach in the state of the art, an uncertainty-aware collision prediction framework is developed that is shown to detect well in advance (and with high reliability) if two vehicles are on a collision course. Subsequently, collision detection triggers a number of alarms that signal the colliding vehicles to brake. Under real-world settings, thanks to the preemptive capabilities of the proposed approach, all the simulated imminent dangers are averted.
Related papers
- CRASH: Crash Recognition and Anticipation System Harnessing with Context-Aware and Temporal Focus Attentions [13.981748780317329]
Accurately and promptly predicting accidents among surrounding traffic agents from camera footage is crucial for the safety of autonomous vehicles (AVs)
This study introduces a novel accident anticipation framework for AVs, termed CRASH.
It seamlessly integrates five components: object detector, feature extractor, object-aware module, context-aware module, and multi-layer fusion.
Our model surpasses existing top baselines in critical evaluation metrics like Average Precision (AP) and mean Time-To-Accident (mTTA)
arXiv Detail & Related papers (2024-07-25T04:12:49Z) - QuAD: Query-based Interpretable Neural Motion Planning for Autonomous Driving [33.609780917199394]
Self-driving vehicles must understand its environment to determine appropriate action.
Traditional systems rely on object detection to find agents in the scene.
We present a unified, interpretable, and efficient autonomy framework that moves away from cascading modules that first perceive occupancy relevant-temporal autonomy.
arXiv Detail & Related papers (2024-04-01T21:11:43Z) - KI-PMF: Knowledge Integrated Plausible Motion Forecasting [11.311561045938546]
Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric.
Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle.
Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations.
arXiv Detail & Related papers (2023-10-18T14:40:52Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - Cognitive Accident Prediction in Driving Scenes: A Multimodality
Benchmark [77.54411007883962]
We propose a Cognitive Accident Prediction (CAP) method that explicitly leverages human-inspired cognition of text description on the visual observation and the driver attention to facilitate model training.
CAP is formulated by an attentive text-to-vision shift fusion module, an attentive scene context transfer module, and the driver attention guided accident prediction module.
We construct a new large-scale benchmark consisting of 11,727 in-the-wild accident videos with over 2.19 million frames.
arXiv Detail & Related papers (2022-12-19T11:43:02Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Prediction-Based Reachability Analysis for Collision Risk Assessment on
Highways [18.18842948832662]
This paper introduces a prediction-based collision risk assessment approach on highways.
We develop an acceleration prediction model, which provides multi-modal probabilistic acceleration distributions to propagate vehicle states.
The proposed collision detection approach is agile and effective to identify the collision in cut-in crash events.
arXiv Detail & Related papers (2022-05-03T07:58:02Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Uncertainty-based Traffic Accident Anticipation with Spatio-Temporal
Relational Learning [30.59728753059457]
Traffic accident anticipation aims to predict accidents from dashcam videos as early as possible.
Current deterministic deep neural networks could be overconfident in false predictions.
We propose an uncertainty-based accident anticipation model with relational-temporal learning.
arXiv Detail & Related papers (2020-08-01T20:21:48Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.