論文の概要: Joint Reconstruction and Parcellation of Cortical Surfaces
- arxiv url: http://arxiv.org/abs/2210.01772v1
- Date: Mon, 19 Sep 2022 11:45:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-09 17:19:00.854562
- Title: Joint Reconstruction and Parcellation of Cortical Surfaces
- Title(参考訳): 皮質表面の関節再建とパーセレーション
- Authors: Anne-Marie Rickmann, Fabian Bongratz, Sebastian P\"olsterl, Ignacio
Sarasua, Christian Wachinger
- Abstract要約: 脳MRI画像からの大脳皮質表面の再構成は、アルツハイマー病(AD)のような神経変性疾患における脳形態解析と皮質シンニングの検出に有用である
本研究では,グラフ分類分岐に基づく2つの選択肢と,新しい汎用的な3次元再構成損失に基づく2つの選択肢を提案し,テンプレート・デフォーメーション・アルゴリズムを改良する。
我々はDiceスコア90.2(グラフ分類分岐)と90.4(復元損失90.4)の高精度なパーセレーションと最先端のサーフェスを同時に達成した。
- 参考スコア(独自算出の注目度): 3.9198548406564604
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The reconstruction of cerebral cortex surfaces from brain MRI scans is
instrumental for the analysis of brain morphology and the detection of cortical
thinning in neurodegenerative diseases like Alzheimer's disease (AD). Moreover,
for a fine-grained analysis of atrophy patterns, the parcellation of the
cortical surfaces into individual brain regions is required. For the former
task, powerful deep learning approaches, which provide highly accurate brain
surfaces of tissue boundaries from input MRI scans in seconds, have recently
been proposed. However, these methods do not come with the ability to provide a
parcellation of the reconstructed surfaces. Instead, separate
brain-parcellation methods have been developed, which typically consider the
cortical surfaces as given, often computed beforehand with FreeSurfer. In this
work, we propose two options, one based on a graph classification branch and
another based on a novel generic 3D reconstruction loss, to augment
template-deformation algorithms such that the surface meshes directly come with
an atlas-based brain parcellation. By combining both options with two of the
latest cortical surface reconstruction algorithms, we attain highly accurate
parcellations with a Dice score of 90.2 (graph classification branch) and 90.4
(novel reconstruction loss) together with state-of-the-art surfaces.
- Abstract(参考訳): 脳MRIスキャンによる大脳皮質表面の再構築は、アルツハイマー病(AD)のような神経変性疾患における脳形態の分析と皮質の薄化の検出に役立つ。
また、萎縮パターンの微細な解析には、皮質表面の個々の脳領域への小胞体化が必要である。
従来の課題では、入力MRIスキャンから数秒で組織境界の高精度な脳表面を提供する強力なディープラーニングアプローチが最近提案されている。
しかし、これらの方法は、再構成された表面のパーセレーションを提供する能力を持っていない。
代わりに、通常、皮質表面を与えられたものとみなし、フリーサーファーで事前に計算される別の脳-パーセレーション法が開発された。
本研究では,グラフ分類枝と,新しい汎用的3次元再構成損失に基づく2つの選択肢を提案し,表面メッシュがアトラスベースの脳セルに直接現れるようにテンプレート変形アルゴリズムを補強する。
両選択肢を最新の皮質表面再構成アルゴリズムの2つと組み合わせることで,ディススコア90.2(グラフ分類枝)と90.4(ノベル再構成損失)と最先端表面との高精度なパーセレーションを実現する。
関連論文リスト
- Neural deformation fields for template-based reconstruction of cortical
surfaces from MRI [5.4173776411667935]
本稿では,脳テンプレートからMRIスキャンの皮質表面への変形場を学習するディープメッシュ変形技術であるVox2Cortex-Flowを紹介する。
V2C-Flowは非常に高速なだけでなく、4つの皮質表面を推測するのに2秒もかからない。
V2C-Flowは精度の点で最先端の皮質表面を呈することを示す。
論文 参考訳(メタデータ) (2024-01-23T17:50:58Z) - A novel method to compute the contact surface area between an organ and cancer tissue [81.84413479369512]
CSA(contact surface area)とは、腫瘍と臓器の間の接触領域のこと。
我々は,腫瘍と臓器の3次元再構成を頼りに,CSAの正確な客観的評価を行う革新的な方法を提案する。
論文 参考訳(メタデータ) (2024-01-19T14:34:34Z) - Reconstruction of Cortical Surfaces with Spherical Topology from Infant
Brain MRI via Recurrent Deformation Learning [16.9042503785353]
MRIからの皮質表面再構成(CSR)は、脳の構造と機能を研究する鍵となる。
本稿では,数秒以内に効率よく球面マッピングを行う手法を提案する。
乳児期脳MRIに対するアプローチの有効性を実証し,CSRに重大な課題を提起した。
論文 参考訳(メタデータ) (2023-12-10T20:20:16Z) - Reconstructing the somatotopic organization of the corticospinal tract
remains a challenge for modern tractography methods [55.07297021627281]
CST(Corticospinal tract)は、人間の脳において、身体の自発的な動きを制御できる重要なホワイトマター線維である。
拡散MRIトラクトグラフィーは、ヒトの健康におけるCST経路の解剖学的および変動性の研究を可能にする唯一の方法である。
論文 参考訳(メタデータ) (2023-06-09T02:05:40Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
我々は,脳の皮質ジャイロ-サルカル分割図を予測するための新しいアテンションメッシュ畳み込みモデルを開発した。
実験の結果,我々のモデルによる予測性能は,他の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-05-21T14:08:53Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
深層学習に基づくアルゴリズムであるVox2Cortexを提案する。
我々は3つの脳MRIデータセットの広範な実験で、我々のメッシュは現場の最先端の方法で再構築されたものと同じくらい正確であることを示した。
論文 参考訳(メタデータ) (2022-03-17T17:06:00Z) - DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction [20.977071784183256]
DeepCSRは、MRIから皮質表面を再構築するための3Dディープラーニングフレームワークである。
高分解能で皮質表面を効率的に再構築し、皮質の折り畳みの細部を捉える。
DeepCSRは、広く使われているFreeSurferツールボックスやディープラーニング駆動のFastSurferよりも正確で、より正確で、高速である。
論文 参考訳(メタデータ) (2020-10-22T03:57:44Z) - Surface Agnostic Metrics for Cortical Volume Segmentation and Regression [3.1543820811374483]
T2MRI画像から大脳皮質の厚みと曲率を推定する機械学習手法を提案する。
結果は、深層畳み込みニューラルネットワークが、脳の発達段階と病理の幅広い範囲で皮質のメトリクスを予測するための実行可能な選択肢であることを示唆している。
論文 参考訳(メタデータ) (2020-10-04T19:46:04Z) - Deep Modeling of Growth Trajectories for Longitudinal Prediction of
Missing Infant Cortical Surfaces [58.780482825156035]
空間グラフ畳み込みニューラルネットワーク(GCNN)を用いた皮質表面の経時的予測法を提案する。
提案手法は,皮質成長軌跡をモデル化し,複数点の内曲面と外曲面を共同で予測する。
本手法が時間的皮質成長パターンの非線形性を捉えることができることを示す。
論文 参考訳(メタデータ) (2020-09-06T18:46:04Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
我々は,MRIボリュームの履歴を用いて,この問題をフル4次元ディープラーニングに拡張することで,性能が向上するかどうか検討する。
提案手法は, 病変側真陽性率0.84, 病変側偽陽性率0.19で従来手法より優れていた。
論文 参考訳(メタデータ) (2020-04-20T11:41:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。