論文の概要: Learning Across Domains and Devices: Style-Driven Source-Free Domain
Adaptation in Clustered Federated Learning
- arxiv url: http://arxiv.org/abs/2210.02326v1
- Date: Wed, 5 Oct 2022 15:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 13:36:34.790543
- Title: Learning Across Domains and Devices: Style-Driven Source-Free Domain
Adaptation in Clustered Federated Learning
- Title(参考訳): ドメインとデバイス間の学習:クラスタ型フェデレーション学習におけるスタイル駆動型ソースフリードメイン適応
- Authors: Donald Shenaj, Eros Fan\`i, Marco Toldo, Debora Caldarola, Antonio
Tavera, Umberto Michieli, Marco Ciccone, Pietro Zanuttigh, Barbara Caputo
- Abstract要約: 本稿では,クライアントのデータをラベル付けせず,サーバが事前学習のためにラベル付きデータセットにアクセスする新しいタスクを提案する。
実験の結果,我々のアルゴリズムは既存の手法よりも効率よく新しい課題に取り組むことができることがわかった。
- 参考スコア(独自算出の注目度): 32.098954477227046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has recently emerged as a possible way to tackle the
domain shift in real-world Semantic Segmentation (SS) without compromising the
private nature of the collected data. However, most of the existing works on FL
unrealistically assume labeled data in the remote clients. Here we propose a
novel task (FFREEDA) in which the clients' data is unlabeled and the server
accesses a source labeled dataset for pre-training only. To solve FFREEDA, we
propose LADD, which leverages the knowledge of the pre-trained model by
employing self-supervision with ad-hoc regularization techniques for local
training and introducing a novel federated clustered aggregation scheme based
on the clients' style. Our experiments show that our algorithm is able to
efficiently tackle the new task outperforming existing approaches. The code is
available at https://github.com/Erosinho13/LADD.
- Abstract(参考訳): Federated Learning (FL)は、最近、収集されたデータのプライベートな性質を損なうことなく、現実世界のセマンティックセグメンテーション(SS)におけるドメインシフトに取り組む方法として浮上した。
しかし、既存のFLでの作業のほとんどは、リモートクライアントでラベル付きデータを非現実的に仮定している。
本稿では,クライアントのデータをラベル解除し,サーバが事前学習のみのためにソースラベル付きデータセットにアクセスする新しいタスク(ffreeda)を提案する。
局所学習のためのアドホック正規化技術を用いた自己スーパービジョンと,クライアントのスタイルに基づく新たなクラスタ化アグリゲーション方式を導入することで,事前学習モデルの知識を活用するLADDを提案する。
実験の結果,我々のアルゴリズムは既存の手法よりも効率よく新しい課題に取り組むことができることがわかった。
コードはhttps://github.com/Erosinho13/LADDで公開されている。
関連論文リスト
- Don't Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory [36.4406505365313]
本稿では,過去のデータの一部を格納するのではなく,生成モデルを用いて過去の分布からサンプルを合成する,連邦化クラスインクリメンタルラーニングのためのフレームワークを提案する。
生成モデルは、クライアントからデータを要求することなく、各タスクの最後にデータフリーのメソッドを使用してサーバ上でトレーニングされる。
論文 参考訳(メタデータ) (2023-07-02T07:06:45Z) - Subspace based Federated Unlearning [75.90552823500633]
フェデレート・アンラーニング(FL)は、ユーザが忘れられる権利を満たすために、特定のターゲットクライアントのFLへの貢献を取り除くことを目的としている。
既存のフェデレートされた未学習アルゴリズムでは、パラメータの更新履歴をサーバに格納する必要がある。
そこで我々は,SFUと呼ばれる,単純なyet効率のサブスペースに基づくフェデレーションアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Bi-level Alignment for Cross-Domain Crowd Counting [113.78303285148041]
現在の手法は、補助的なタスクを訓練したり、高価な粗大な見積もりを適用したりするための外部データに依存している。
そこで我々は, 簡易かつ効率的に適用可能な, 逆学習に基づく新しい手法を開発した。
実世界の5つのクラウドカウントベンチマークに対するアプローチを評価し、既存のアプローチを大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-05-12T02:23:25Z) - One-shot Federated Learning without Server-side Training [42.59845771101823]
クライアントとサーバ間の通信コストを削減する手段として,ワンショットのフェデレーション学習が人気を集めている。
既存のワンショットFL法のほとんどは知識蒸留に基づいているが、蒸留に基づくアプローチでは追加のトレーニングフェーズが必要であり、公開されているデータセットや生成された擬似サンプルに依存する。
本研究では,サーバサイドのトレーニングなしで,ローカルモデル上で1ラウンドのパラメータアグリゲーションを実行するという,新しいクロスサイロ設定について考察する。
論文 参考訳(メタデータ) (2022-04-26T01:45:37Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Federated Learning with Domain Generalization [11.92860245410696]
フェデレートラーニング(Federated Learning)は、集中型サーバの助けを借りて、機械学習モデルを共同でトレーニングすることを可能にする。
実際には、複数のソースドメイン上でトレーニングされたモデルは、目に見えないターゲットドメイン上での一般化性能が劣る可能性がある。
我々は,フェデレート学習とドメイン一般化能力の両立を図り,FedADGを提案する。
論文 参考訳(メタデータ) (2021-11-20T01:02:36Z) - FedSEAL: Semi-Supervised Federated Learning with Self-Ensemble Learning
and Negative Learning [7.771967424619346]
Federated Learning (FL) は、分散化されたプライバシ保護機械学習(FL)フレームワークとして人気がある。
本稿では,この半教師付きフェデレート学習(SSFL)問題を解くために,FedSEALと呼ばれる新しいFLアルゴリズムを提案する。
提案アルゴリズムは,自己アンサンブル学習と相補的負学習を利用して,未ラベルデータに対するクライアントの教師なし学習の精度と効率を両立させる。
論文 参考訳(メタデータ) (2021-10-15T03:03:23Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。