論文の概要: IRJIT: A Simple, Online, Information Retrieval Approach for Just-In-Time Software Defect Prediction
- arxiv url: http://arxiv.org/abs/2210.02435v3
- Date: Wed, 12 Jun 2024 05:40:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 02:02:19.029041
- Title: IRJIT: A Simple, Online, Information Retrieval Approach for Just-In-Time Software Defect Prediction
- Title(参考訳): IRJIT: ジャスト・イン・タイムのソフトウェア欠陥予測のためのシンプルでオンラインな情報検索アプローチ
- Authors: Hareem Sahar, Abdul Ali Bangash, Abram Hindle, Denilson Barbosa,
- Abstract要約: Just-in-Timeソフトウェア欠陥予測(JIT-SDP)は、コミットチェックイン時にそれらを特定することによって、ソフトウェアへの欠陥の導入を防止する。
現在のソフトウェア欠陥予測アプローチは、変更メトリクスなどの手作業による機能に依存しており、マシンラーニングやディープラーニングモデルのトレーニングにコストがかかる。
我々は,ソースコード上の情報検索を利用して,過去のバグやクリーンなコミットと類似性に基づいて,新しいコミットをバグやクリーンとしてラベル付けするIRJITという手法を提案する。
- 参考スコア(独自算出の注目度): 10.084626547964389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Just-in-Time software defect prediction (JIT-SDP) prevents the introduction of defects into the software by identifying them at commit check-in time. Current software defect prediction approaches rely on manually crafted features such as change metrics and involve expensive to train machine learning or deep learning models. These models typically involve extensive training processes that may require significant computational resources and time. These characteristics can pose challenges when attempting to update the models in real-time as new examples become available, potentially impacting their suitability for fast online defect prediction. Furthermore, the reliance on a complex underlying model makes these approaches often less explainable, which means the developers cannot understand the reasons behind models' predictions. An approach that is not explainable might not be adopted in real-life development environments because of developers' lack of trust in its results. To address these limitations, we propose an approach called IRJIT that employs information retrieval on source code and labels new commits as buggy or clean based on their similarity to past buggy or clean commits. IRJIT approach is online and explainable as it can learn from new data without expensive retraining, and developers can see the documents that support a prediction, providing additional context. By evaluating 10 open-source datasets in a within project setting, we show that our approach is up to 112 times faster than the state-of-the-art ML and DL approaches, offers explainability at the commit and line level, and has comparable performance to the state-of-the-art.
- Abstract(参考訳): Just-in-Timeソフトウェア欠陥予測(JIT-SDP)は、コミットチェックイン時にそれらを特定することによって、ソフトウェアへの欠陥の導入を防止する。
現在のソフトウェア欠陥予測アプローチは、変更メトリクスなどの手作業による機能に依存しており、マシンラーニングやディープラーニングモデルのトレーニングにコストがかかる。
これらのモデルは通常、かなりの計算資源と時間を必要とするかもしれない広範囲なトレーニングプロセスを含む。
これらの特徴は、新しい例が利用可能になるにつれて、モデルをリアルタイムで更新しようとするときに課題を生じさせ、高速なオンライン欠陥予測に対する彼らの適合性に影響を与える可能性がある。
さらに、複雑な基盤となるモデルへの依存は、これらのアプローチを説明しにくくすることが多いため、開発者はモデルの予測の背後にある理由を理解できない。
説明できないアプローチは、開発者による結果への信頼の欠如のため、実際の開発環境では採用されない可能性がある。
これらの制約に対処するため、IRJITと呼ばれるアプローチを提案し、ソースコードから情報検索を行い、過去のバグやクリーンなコミットと類似性に基づいて、新しいコミットをバギーやクリーンとしてラベル付けする。
IRJITアプローチは、高価な再トレーニングなしに新しいデータから学ぶことができ、開発者は予測をサポートするドキュメントを見ることができ、追加のコンテキストを提供する。
プロジェクト設定内で10のオープンソースデータセットを評価することで、我々のアプローチが最先端のMLとDLアプローチの最大112倍高速であることを示し、コミットとラインレベルで説明可能性を提供し、最先端のものと同等のパフォーマンスを持つ。
関連論文リスト
- Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
本稿では,機械学習モデルにおける根源的性能劣化に対する説明可能なAI(XAI)の新たな応用法を提案する。
単一機能の破損は、カスケード機能、ラベル、コンセプトドリフトを引き起こす可能性がある。
我々は、パーソナライズされた広告に使用されるモデルの信頼性を向上させるために、この手法をうまく応用した。
論文 参考訳(メタデータ) (2024-03-04T19:38:50Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
この論文は、現代の機械学習のいくつかのデータ感度を探求する。
まず、トレーニングデータで測定された事前の人間の識別をMLが符号化するのを防ぐ方法について論じる。
次に、トレーニング中に予測忠実度を提供するが、デプロイ時に信頼性が低い突発的特徴を含むデータから学習する問題について論じる。
論文 参考訳(メタデータ) (2023-12-19T20:49:28Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Graph-Based Machine Learning Improves Just-in-Time Defect Prediction [0.38073142980732994]
グラフベースの機械学習を使用して、Just-In-Time(JIT)の欠陥予測を改善します。
私たちの最高のモデルでは、コード変更がF1スコアが最大77.55%の欠陥につながるかどうかを予測できます。
これは、最先端のJIT欠陥予測よりも152%高いF1スコアと3%高いMCCを示している。
論文 参考訳(メタデータ) (2021-10-11T16:00:02Z) - Discovering and Validating AI Errors With Crowdsourced Failure Reports [10.4818618376202]
クラウドソースの障害レポートや、モデルが失敗した理由や理由に関するエンドユーザの説明を導入し、開発者がAIエラーの検出にどのように使用できるかを示します。
また、障害レポートを合成する視覚分析システムであるDeblinderを設計、実装する。
半構造化されたインタビューと10人のAI実践者とのシンク・アラウド・スタディでは、現実の環境でのDeblinderシステムと障害報告の適用可能性について検討する。
論文 参考訳(メタデータ) (2021-09-23T23:26:59Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Towards a Rigorous Evaluation of Explainability for Multivariate Time
Series [5.786452383826203]
本研究では,時系列予測問題におけるモデル非依存な説明可能性の実現と評価を行った。
その解決策は、販売契約を予測する時系列予測問題として問題をフレーミングすることであった。
LIMEとSHAPによる説明は、機械学習モデルによる予測を理解する上で、人間を大いに助けた。
論文 参考訳(メタデータ) (2021-04-06T17:16:36Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。