論文の概要: Analyzing historical diagnosis code data from NIH N3C and RECOVER
Programs using deep learning to determine risk factors for Long Covid
- arxiv url: http://arxiv.org/abs/2210.02490v1
- Date: Wed, 5 Oct 2022 18:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 15:33:25.833572
- Title: Analyzing historical diagnosis code data from NIH N3C and RECOVER
Programs using deep learning to determine risk factors for Long Covid
- Title(参考訳): 深層学習を用いたNIH N3CおよびRECOVERプログラムからの歴史的診断符号データの解析とLong Covidのリスク要因の検討
- Authors: Saurav Sengupta, Johanna Loomba, Suchetha Sharma, Donald E. Brown,
Lorna Thorpe, Melissa A Haendel, Christopher G Chute, Stephanie Hong
- Abstract要約: SARS-CoV-2感染症(PASC)やLong COVID(Long COVID)の急性後遺症が流行している。
そこで我々は,National COVID Cohort Collectiveから過去の診断コードデータを分析するための,解釈可能なディープラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 0.5058404769410755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-acute sequelae of SARS-CoV-2 infection (PASC) or Long COVID is an
emerging medical condition that has been observed in several patients with a
positive diagnosis for COVID-19. Historical Electronic Health Records (EHR)
like diagnosis codes, lab results and clinical notes have been analyzed using
deep learning and have been used to predict future clinical events. In this
paper, we propose an interpretable deep learning approach to analyze historical
diagnosis code data from the National COVID Cohort Collective (N3C) to find the
risk factors contributing to developing Long COVID. Using our deep learning
approach, we are able to predict if a patient is suffering from Long COVID from
a temporally ordered list of diagnosis codes up to 45 days post the first COVID
positive test or diagnosis for each patient, with an accuracy of 70.48\%. We
are then able to examine the trained model using Gradient-weighted Class
Activation Mapping (GradCAM) to give each input diagnoses a score. The highest
scored diagnosis were deemed to be the most important for making the correct
prediction for a patient. We also propose a way to summarize these top
diagnoses for each patient in our cohort and look at their temporal trends to
determine which codes contribute towards a positive Long COVID diagnosis.
- Abstract(参考訳): SARS-CoV-2感染症(英語版)(PASC)またはLong COVIDの急性後遺症は、新型コロナウイルス陽性のいくつかの患者で観察されている。
診断コード、検査結果、臨床ノートなどの歴史的な電子健康記録(ehr)はディープラーニングを用いて分析され、将来の臨床事象の予測に使用されている。
本稿では,National COVID Cohort Collective (N3C) の歴史的診断コードデータを分析し,Long COVIDの発症に寄与するリスク要因を明らかにするための,解釈可能な深層学習手法を提案する。
深層学習アプローチを用いて、患者が時間順に指示された診断コードから、各患者の最初の陽性検査または診断の45日後に、70.48\%の精度でLong COVIDを患っているかどうかを予測することができる。
次に、GradCAM(Gradient-weighted Class Activation Mapping)を用いてトレーニングされたモデルを調べ、各入力がスコアを診断する。
最も高い診断は、患者にとって正しい予測を行う上で最も重要なものと考えられた。
また、我々のコホートにおける患者ごとのトップ診断をまとめて、その時間的傾向を見て、どのコードがLong COVIDの陽性診断に寄与するかを判断する方法も提案する。
関連論文リスト
- Continuous Predictive Modeling of Clinical Notes and ICD Codes in Patient Health Records [9.427150895481832]
本研究は, 患者全員の滞在時間におけるICDコード予測の可能性について検討した。
早期に診断と治療を予測する手法の開発は、予測医学の機会を開く可能性がある。
論文 参考訳(メタデータ) (2024-05-19T17:23:04Z) - An Ensemble Approach for Patient Prognosis of Head and Neck Tumor Using
Multimodal Data [0.0]
頭頸部腫瘍の予後を予測するために,深層マルチタスクロジスティック回帰(MTLR),コックス比重ハザード(CoxPH),CNNモデルを組み込んだマルチモーダルネットワークを提案する。
提案手法は,HECKTORテストセットのC-インデックス0.72を達成し,HECKTORチャレンジの予後タスクにおける第1位を救った。
論文 参考訳(メタデータ) (2022-02-25T07:50:59Z) - An Automated Approach for Timely Diagnosis and Prognosis of Coronavirus
Disease [1.52292571922932]
コロナウイルス病2019(COVID-19)の流行以降、感染した患者の多くは高熱、乾ききき、喉の腫れなどと診断され、重篤な肺炎に繋がった。
これまで、肺イメージングによるCOVID-19の診断は、この疾患の早期診断の主要な証拠であることが証明されています。
提案手法は,非造影CT(non-contrast chest Computed tomography)スキャンによる疾患の自動診断と予後に焦点をあてるものである。
論文 参考訳(メタデータ) (2021-04-29T05:26:30Z) - Development and Validation of a Deep Learning Model for Prediction of
Severe Outcomes in Suspected COVID-19 Infection [9.524156465126758]
救急外来(ed)に初診した患者の予測結果を伴うトリエイジングは、患者の予後を改善する上で重要である。
我々は、患者の結果を予測するために深い機能融合モデルを訓練した。
モデルアウトプットは、最も非感受性な酸素療法が要求される患者の結果であった。
新型コロナウイルス重篤な結果(CO-RISKスコア)の予測リスクスコアは、モデルアウトプットから導出され、テストデータセットで評価された。
論文 参考訳(メタデータ) (2021-03-21T00:03:27Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
新型コロナウイルス患者の効果的なスクリーニングを可能にするロジスティック回帰とXGBoost分類器が作成された。
得られた分類モデルは、DECODEサービス(decode.polsl.pl)の基礎を提供し、COVID-19病患者のスクリーニング支援に役立てることができる。
このデータセットは、3,000以上のサンプルで構成されており、ポーランドの病院で収集されたアンケートに基づいている。
論文 参考訳(メタデータ) (2020-11-24T17:44:01Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - CovidCare: Transferring Knowledge from Existing EMR to Emerging Epidemic
for Interpretable Prognosis [20.701122594508675]
新興感染症患者の予後を高めるための深層学習型アプローチであるCovidCareを提案する。
CovidCareは、トランスファーラーニングを通じて、大量の既存のEMRデータに基づいて、新型コロナウイルス関連の医療機能を組み込むことを学ぶ。
実際のCOVID-19データセット上で、患者に対する滞在予測実験の期間を延ばす。
論文 参考訳(メタデータ) (2020-07-17T09:20:56Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。