Superconducting resonators with voltage-controlled frequency and
nonlinearity
- URL: http://arxiv.org/abs/2210.02491v2
- Date: Sun, 25 Dec 2022 23:15:05 GMT
- Title: Superconducting resonators with voltage-controlled frequency and
nonlinearity
- Authors: William M. Strickland, Bassel Heiba Elfeky, Joseph O'Connell Yuan,
William F. Schiela, Peng Yu, Dylan Langone, Maxim G. Vavilov, Vladimir E.
Manucharyan and Javad Shabani
- Abstract summary: Voltage-tunable superconductor-semiconductor devices offer a unique platform to realize dynamic tunability in quantum circuits.
We demonstrate the use of a wide-range gate-tunable superconducting element.
We show that the resonant frequency is controlled via a gate-tunable Josephson inductance and that the non-linearity of the voltage-controlled InAs-Al junction is non-dissipative.
- Score: 0.7812194618516135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Voltage-tunable superconductor-semiconductor devices offer a unique platform
to realize dynamic tunability in superconducting quantum circuits. By
galvanically connecting a gated InAs-Al Josephson junction to a coplanar
waveguide resonator, we demonstrate the use of a wide-range gate-tunable
superconducting element. We show that the resonant frequency is controlled via
a gate-tunable Josephson inductance and that the non-linearity of the
voltage-controlled InAs-Al junction is non-dissipative as is the case with
conventional Al-AlO$_{x}$ junctions. As the gate voltage is decreased, the
inductive participation of the junction increases up to $44\%$, resulting in
the resonant frequency being tuned by over 2 GHz. Utilizing the wide tunability
of the device, we demonstrate that two resonant modes can be adjusted such that
they strongly hybridize, exhibiting an avoided level crossing with a coupling
strength of 51 MHz. Implementing such voltage-tunable resonators is the first
step toward realizing wafer-scale continuous voltage control in superconducting
circuits for qubit-qubit coupling, quantum-limited amplifiers, and quantum
memory platforms.
Related papers
- Ultra-dispersive resonator readout of a quantum-dot qubit using longitudinal coupling [0.20742830443146304]
We perform readout of a quantum-dot hybrid qubit coupled to a superconducting resonator through a parametric, longitudinal interaction mechanism.
Our experiments are performed with the qubit and resonator frequencies detuned by $sim$10 GHz, demonstrating that longitudinal coupling can facilitate semiconductor qubit operation in the 'ultra-dispersive' regime of circuit quantum electrodynamics.
arXiv Detail & Related papers (2024-07-11T21:11:12Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - A Cooper-Pair Box Coupled to Two Resonators: An Architecture for a
Quantum Refrigerator [2.883578416080909]
We fabricate and perform spectroscopy of a gated Cooper-pair box capacitively coupled to two superconducting coplanar waveguide resonators with different frequencies.
We experimentally demonstrate the strong coupling of a charge qubit to two superconducting resonators, with the ability to perform voltage driving of the qubit at GHz frequencies.
arXiv Detail & Related papers (2021-09-07T12:12:42Z) - Ultrastrong tunable coupler between superconducting LC resonators [0.0]
We investigate the ultrastrong tunable coupler for coupling of superconducting resonators.
The wide range tunability is achieved both antiferromagnetics and ferromagnetics from $-1086$ MHz to 604 MHz.
arXiv Detail & Related papers (2021-07-28T05:38:09Z) - Parametric longitudinal coupling between a high-impedance
superconducting resonator and a semiconductor quantum dot singlet-triplet
spin qubit [0.0]
Long-distance two-qubit coupling, mediated by a superconducting resonator, is a leading paradigm for performing entangling operations in a quantum computer.
We demonstrate a novel, controllable spin-photon coupling based on a longitudinal interaction between a spin qubit and a resonator.
arXiv Detail & Related papers (2021-07-21T18:00:03Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Coupling two charge qubits via a superconducting resonator operating in
the resonant and dispersive regimes [5.526775342940154]
We describe a new type of charge qubit formed by an electron confined in a triple-quantum-dot system.
We present the form for the long-range dipolar coupling between the charge qubit and a superconducting resonator.
We find that the fidelity for the iSWAP gate can reach fidelity higher than 99% for the noise level typical in experiments.
arXiv Detail & Related papers (2020-12-28T07:49:41Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.