Fractional Statistics
- URL: http://arxiv.org/abs/2210.02530v2
- Date: Sun, 20 Nov 2022 14:45:06 GMT
- Title: Fractional Statistics
- Authors: Martin Greiter, Frank Wilczek
- Abstract summary: We study the quantum-mechanical description of particles whose motion is confined to two (or one) spatial dimensions.
The crossings of one-dimensional anyons on a ring are uni-directional, such that a fractional phase $theta$ acquired upon interchange gives rise to fractional shifts in the relative momenta between the anyons.
Excitations within designed systems, notably including superconducting circuits, can exhibit anyon behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum-mechanical description of assemblies of particles whose motion is
confined to two (or one) spatial dimensions offers many possibilities that are
distinct from bosons and fermions. We call such particles anyons. The simplest
anyons are parameterized by an angular phase parameter $\theta$. $\theta = 0,
\pi$ correspond to bosons and fermions respectively; at intermediate values we
say that we have fractional statistics. In two dimensions, $\theta$ describes
the phase acquired by the wave function as two anyons wind around one another
counterclockwise. It generates a shift in the allowed values for the relative
angular momentum. Composites of localized electric charge and magnetic flux
associated with an abelian U(1) gauge group realize this behavior. More complex
charge-flux constructions can involve non-abelian and product groups acting on
a spectrum of allowed charges and fluxes, giving rise to nonabelian and mutual
statistics. Interchanges of non-abelian anyons implement unitary
transformations of the wave function within an emergent space of internal
states. Anyons of all kinds are described by quantum field theories that
include Chern--Simons terms. The crossings of one-dimensional anyons on a ring
are uni-directional, such that a fractional phase $\theta$ acquired upon
interchange gives rise to fractional shifts in the relative momenta between the
anyons. The quasiparticle excitations of fractional quantum Hall states have
long been predicted to include anyons. Recently the anyon behavior predicted
for quasiparticles in the $\nu = 1/3$ fractional quantum Hall state has been
observed both in scattering and in interferometric experiments. Excitations
within designed systems, notably including superconducting circuits, can
exhibit anyon behavior. Such systems are being developed for possible use in
quantum information processing.
Related papers
- Representation theory of Gaussian unitary transformations for bosonic and fermionic systems [0.0]
We analyze the behavior of the sign ambiguity that one needs to deal with when moving between the groups of the symplectic and special annihilation group.
We show how we can efficiently describe group multiplications in the double cover without the need of going to a faithful representation on an exponentially large or even infinite-dimensional space.
arXiv Detail & Related papers (2024-09-18T01:22:38Z) - Double-scale theory [77.34726150561087]
We present a new interpretation of quantum mechanics, called the double-scale theory.
It is based on the simultaneous existence of two wave functions in the laboratory reference frame.
The external wave function corresponds to a field that pilots the center-of-mass of the quantum system.
The internal wave function corresponds to the interpretation proposed by Edwin Schr"odinger.
arXiv Detail & Related papers (2023-05-29T14:28:31Z) - One-dimensional pseudoharmonic oscillator: classical remarks and
quantum-information theory [0.0]
Motion of a potential that is a combination of positive quadratic and inverse quadratic functions of the position is considered.
The dependence on the particle energy and the factor $mathfraka$ describing a relative strength of its constituents is described.
arXiv Detail & Related papers (2023-04-13T11:50:51Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Discrete Phase Space-Continuous Time Relativistic Klein-Gordon and Dirac
Equations, and a New Non-Singular Yukawa Potential [0.0]
This paper deals with the second quantization of interacting relativistic Fermionic and Bosonic fields in discrete phase space and continuous time.
The corresponding Feynman diagrams and a new $S#$-matrix theory is developed.
arXiv Detail & Related papers (2022-01-06T06:14:57Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Solvable model of a generic driven mixture of trapped Bose-Einstein
condensates and properties of a many-boson Floquet state at the limit of an
infinite number of particles [0.0]
A solvable model of a periodically-driven mixture of Bose-Einstein condensates is presented.
The model generalizes the harmonic-interaction model for the time-dependent domain.
We investigate the imprinting of momentum and its fluctuations when steering a Bose-Einstein condensate by an interacting bosonic impurity.
arXiv Detail & Related papers (2020-10-29T15:01:59Z) - Quantum dynamics and relaxation in comb turbulent diffusion [91.3755431537592]
Continuous time quantum walks in the form of quantum counterparts of turbulent diffusion in comb geometry are considered.
Operators of the form $hatcal H=hatA+ihatB$ are described.
Rigorous analytical analysis is performed for both wave and Green's functions.
arXiv Detail & Related papers (2020-10-13T15:50:49Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.