Non-inertial effects on a non-relativistic quantum harmonic oscillator
in the presence of a screw dislocation
- URL: http://arxiv.org/abs/2210.02559v1
- Date: Tue, 4 Oct 2022 13:50:54 GMT
- Title: Non-inertial effects on a non-relativistic quantum harmonic oscillator
in the presence of a screw dislocation
- Authors: L. C. N. Santos, F. M. da Silva, C. E. Mota, V. B. Bezerra
- Abstract summary: We investigate non-inertial effects induced by a rotating frame on a non-relativistic quantum harmonic oscillator.
The presence of the topological defect (screw dislocation) as well as the fact that we are analysing the system from the point of view of a rotating frame, changes the solutions of Schr"odinger equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate non-inertial effects induced by a rotating frame on a
non-relativistic quantum harmonic oscillator as well as of the topology
associated to a screw dislocation, which corresponds to a distortion of a
vertical line into a vertical spiral. To do this, we obtain the analytical
solutions of the time-independent Schr\"odinger equation for this harmonic
oscillator potential in this background. The expressions for the energy
spectrum are obtained and the solutions for four quantum states, namely
$n=0,1,2$ and $3$, are analysed. Our results show that the presence of the
topological defect (screw dislocation) as well the fact that we are analysing
the system from the point of view of a rotating frame, changes the solutions of
Schr\"odinger equation and the corresponding spectrum. Now these quantities
depend on the angular velocity of the rotating frame, $\Omega$, and also on the
parameter $\beta$, which codifies the presence of the screw dislocation.
Particularly, with respect to the energy spectrum of the system the changing is
such that when $\Omega$ increases, the energy can increase or decrease
depending on the values we assign to the eigenvalues of the angular and linear
momenta. Additionally, we observe that the values of the parameter $\beta$ that
characterizes the screw dislocation causes a shift in the energy spectrum.
Related papers
- Unifying Floquet theory of longitudinal and dispersive readout [33.7054351451505]
We devise a Floquet theory of longitudinal and dispersive readout in circuit QED.
We apply them to superconducting and spin-hybrid cQED systems.
arXiv Detail & Related papers (2024-07-03T18:00:47Z) - Optical and electronic properties of a two-dimensional quantum ring
under rotating effects [1.6439662732340548]
This work presents a study on the nonrelativistic quantum motion of a charged particle in a rotating frame.
We derive the equation of motion and the corresponding radial equation to describe the system.
arXiv Detail & Related papers (2023-05-25T19:49:17Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Rotational and inverse square potential effects on harmonic oscillator
confined by flux field in a space-time with screw dislocation [0.0]
We study the interplay of non-inertial effects induced by a rotating frame and confinement by the Aharonov-Bohm flux field.
In both scenarios, a significant observation is made: the quantum flux field's existence brings about a shift in the energy spectrum.
arXiv Detail & Related papers (2023-03-02T06:51:13Z) - Non-relativistic quantum particles interacting with pseudoharmonic-type
potential under flux field in a topological defect geometry [0.0]
We investigate the quantum motions of non-relativistic particles interacting with a potential in the presence of the Aharonov-Bohm flux field.
Our findings reveal that the eigenvalue solutions are significantly influenced by the topological defect characterized by the parameter $beta$.
This influence manifests as a shift in the energy spectrum, drawing parallels to the gravitational analog of the Aharonov-Bohm effect.
arXiv Detail & Related papers (2023-02-01T17:45:02Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Quantum particle motion on the surface of a helicoid in the presence of
harmonic oscillator [0.0]
We study the consequences of a helicoidal geometry in the Schr"odinger equation dealing with an anisotropic mass tensor.
We determine the eigenfunctions in terms of Confluent Heun Functions and compute the respective energy levels.
arXiv Detail & Related papers (2020-05-03T23:47:11Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.