Towards Better Semantic Understanding of Mobile Interfaces
- URL: http://arxiv.org/abs/2210.02663v1
- Date: Thu, 6 Oct 2022 03:48:54 GMT
- Title: Towards Better Semantic Understanding of Mobile Interfaces
- Authors: Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung
Hsiao, Jindong (JD) Chen, Abhanshu Sharma and James Stout
- Abstract summary: We release a human-annotated dataset with approximately 500k unique annotations aimed at increasing the understanding of the functionality of UI elements.
This dataset augments images and view hierarchies from RICO, a large dataset of mobile UIs.
We also release models using image-only and multimodal inputs; we experiment with various architectures and study the benefits of using multimodal inputs on the new dataset.
- Score: 7.756895821262432
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Improving the accessibility and automation capabilities of mobile devices can
have a significant positive impact on the daily lives of countless users. To
stimulate research in this direction, we release a human-annotated dataset with
approximately 500k unique annotations aimed at increasing the understanding of
the functionality of UI elements. This dataset augments images and view
hierarchies from RICO, a large dataset of mobile UIs, with annotations for
icons based on their shapes and semantics, and associations between different
elements and their corresponding text labels, resulting in a significant
increase in the number of UI elements and the categories assigned to them. We
also release models using image-only and multimodal inputs; we experiment with
various architectures and study the benefits of using multimodal inputs on the
new dataset. Our models demonstrate strong performance on an evaluation set of
unseen apps, indicating their generalizability to newer screens. These models,
combined with the new dataset, can enable innovative functionalities like
referring to UI elements by their labels, improved coverage and better
semantics for icons etc., which would go a long way in making UIs more usable
for everyone.
Related papers
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
arXiv Detail & Related papers (2024-11-26T14:29:47Z) - Harnessing Webpage UIs for Text-Rich Visual Understanding [112.01029887404296]
We propose synthesizing general multimodal instructions from webpage UIs using text-based large language models (LLMs)
These instructions are then paired with UI screenshots to train multimodal models.
We introduce MultiUI, a dataset containing 7.3 million samples from 1 million websites, covering diverse multimodal tasks and UI layouts.
arXiv Detail & Related papers (2024-10-17T17:48:54Z) - AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents [50.39555842254652]
We introduce the Android Multi-annotation EXpo (AMEX) to advance research on AI agents in mobile scenarios.
AMEX comprises over 104K high-resolution screenshots from 110 popular mobile applications, which are annotated at multiple levels.
AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions.
arXiv Detail & Related papers (2024-07-03T17:59:58Z) - Tell Me What's Next: Textual Foresight for Generic UI Representations [65.10591722192609]
We propose Textual Foresight, a novel pretraining objective for learning UI screen representations.
Textual Foresight generates global text descriptions of future UI states given a current UI and local action taken.
We train with our newly constructed mobile app dataset, OpenApp, which results in the first public dataset for app UI representation learning.
arXiv Detail & Related papers (2024-06-12T02:43:19Z) - Multi-Granularity Language-Guided Multi-Object Tracking [95.91263758294154]
We propose a new multi-object tracking framework, named LG-MOT, that explicitly leverages language information at different levels of granularity.
At inference, our LG-MOT uses the standard visual features without relying on annotated language descriptions.
Our LG-MOT achieves an absolute gain of 2.2% in terms of target object association (IDF1 score) compared to the baseline using only visual features.
arXiv Detail & Related papers (2024-06-07T11:18:40Z) - UI Semantic Group Detection: Grouping UI Elements with Similar Semantics
in Mobile Graphical User Interface [10.80156450091773]
Existing studies on UI elements grouping mainly focus on a single UI-related software engineering task, and their groups vary in appearance and function.
We propose our semantic component groups that pack adjacent text and non-text elements with similar semantics.
To recognize semantic component groups on a UI page, we propose a robust, deep learning-based vision detector, UISCGD.
arXiv Detail & Related papers (2024-03-08T01:52:44Z) - Spotlight: Mobile UI Understanding using Vision-Language Models with a
Focus [9.401663915424008]
We propose a vision-language model that only takes the screenshot of the UI and a region of interest on the screen as the input.
Our experiments show that our model obtains SoTA results on several representative UI tasks and outperforms previous methods.
arXiv Detail & Related papers (2022-09-29T16:45:43Z) - Fashionformer: A simple, Effective and Unified Baseline for Human
Fashion Segmentation and Recognition [80.74495836502919]
In this work, we focus on joint human fashion segmentation and attribute recognition.
We introduce the object query for segmentation and the attribute query for attribute prediction.
For attribute stream, we design a novel Multi-Layer Rendering module to explore more fine-grained features.
arXiv Detail & Related papers (2022-04-10T11:11:10Z) - UIBert: Learning Generic Multimodal Representations for UI Understanding [12.931540149350633]
We introduce a transformer-based joint image-text model trained through novel pre-training tasks on large-scale unlabeled UI data.
Our key intuition is that the heterogeneous features in a UI are self-aligned, i.e., the image and text features of UI components, are predictive of each other.
We propose five pretraining tasks utilizing this self-alignment among different features of a UI component and across various components in the same UI.
We evaluate our method on nine real-world downstream UI tasks where UIBert outperforms strong multimodal baselines by up to 9.26% accuracy.
arXiv Detail & Related papers (2021-07-29T03:51:36Z) - Multimodal Icon Annotation For Mobile Applications [11.342641993269693]
We propose a novel deep learning based multi-modal approach that combines the benefits of both pixel and view hierarchy features.
In order to demonstrate the utility provided, we create a high quality UI dataset by manually annotating the most commonly used 29 icons in Rico.
arXiv Detail & Related papers (2021-07-09T13:57:37Z) - ActionBert: Leveraging User Actions for Semantic Understanding of User
Interfaces [12.52699475631247]
We introduce a new pre-trained UI representation model called ActionBert.
Our methodology is designed to leverage visual, linguistic and domain-specific features in user interaction traces to pre-train generic feature representations of UIs and their components.
Experiments show that the proposed ActionBert model outperforms multi-modal baselines across all downstream tasks by up to 15.5%.
arXiv Detail & Related papers (2020-12-22T20:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.