ShowUI: One Vision-Language-Action Model for GUI Visual Agent
- URL: http://arxiv.org/abs/2411.17465v1
- Date: Tue, 26 Nov 2024 14:29:47 GMT
- Title: ShowUI: One Vision-Language-Action Model for GUI Visual Agent
- Authors: Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan Wang, Mike Zheng Shou,
- Abstract summary: Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity.
We develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations.
ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding.
- Score: 80.50062396585004
- License:
- Abstract: Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
Related papers
- UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions.
In the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively)
arXiv Detail & Related papers (2025-01-21T17:48:10Z) - Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
Information-Sensitive Cropping (ISC) and Self-Refining Dual Learning (SRDL)
Iris achieves state-of-the-art performance across multiple benchmarks with only 850K GUI annotations.
These improvements translate to significant gains in both web and OS agent downstream tasks.
arXiv Detail & Related papers (2024-12-13T18:40:10Z) - Falcon-UI: Understanding GUI Before Following User Instructions [57.67308498231232]
We introduce an instruction-free GUI navigation dataset, termed Insight-UI dataset, to enhance model comprehension of GUI environments.
Insight-UI dataset is automatically generated from the Common Crawl corpus, simulating various platforms.
We develop the GUI agent model Falcon-UI, which is initially pretrained on Insight-UI dataset and subsequently fine-tuned on Android and Web GUI datasets.
arXiv Detail & Related papers (2024-12-12T15:29:36Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
We introduce Aguvis, a unified vision-based framework for autonomous GUI agents.
Our approach leverages image-based observations, and grounding instructions in natural language to visual elements.
To address the limitations of previous work, we integrate explicit planning and reasoning within the model.
arXiv Detail & Related papers (2024-12-05T18:58:26Z) - Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents [20.08996257335876]
We advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly take pixel-level operations on the GUI.
We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots.
We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models.
arXiv Detail & Related papers (2024-10-07T17:47:50Z) - GUI Action Narrator: Where and When Did That Action Take Place? [19.344324166716245]
We develop a video captioning benchmark for GUI actions, comprising 4,189 diverse video captioning samples.
This task presents unique challenges compared to natural scene video captioning.
We introduce our GUI action dataset textbfAct2Cap as well as a simple yet effective framework, textbfGUI Narrator, for GUI video captioning.
arXiv Detail & Related papers (2024-06-19T17:22:11Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces [27.84098739594353]
Graph4GUI exploits graph neural networks to capture individual elements' properties and semantic-visuo-spatial constraints in a layout.
The learned representation demonstrated its effectiveness in multiple tasks, especially generating designs in a challenging GUI autocompletion task.
arXiv Detail & Related papers (2024-04-21T04:06:09Z) - ScreenAI: A Vision-Language Model for UI and Infographics Understanding [4.914575630736291]
We introduce ScreenAI, a vision-language model that specializes in UI and infographics understanding.
At the heart of this mixture is a novel screen annotation task in which the model has to identify the type and location of UI elements.
We use these text annotations to describe screens to Large Language Models and automatically generate question-answering (QA), UI navigation, and summarization training datasets at scale.
arXiv Detail & Related papers (2024-02-07T06:42:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.