DReS-FL: Dropout-Resilient Secure Federated Learning for Non-IID Clients
via Secret Data Sharing
- URL: http://arxiv.org/abs/2210.02680v1
- Date: Thu, 6 Oct 2022 05:04:38 GMT
- Title: DReS-FL: Dropout-Resilient Secure Federated Learning for Non-IID Clients
via Secret Data Sharing
- Authors: Jiawei Shao, Yuchang Sun, Songze Li, Jun Zhang
- Abstract summary: Federated learning (FL) strives to enable collaborative training of machine learning models without centrally collecting clients' private data.
This paper proposes a Dropout-Resilient Secure Federated Learning framework based on Lagrange computing.
We show that DReS-FL is resilient to client dropouts and provides privacy protection for the local datasets.
- Score: 7.573516684862637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) strives to enable collaborative training of machine
learning models without centrally collecting clients' private data. Different
from centralized training, the local datasets across clients in FL are
non-independent and identically distributed (non-IID). In addition, the
data-owning clients may drop out of the training process arbitrarily. These
characteristics will significantly degrade the training performance. This paper
proposes a Dropout-Resilient Secure Federated Learning (DReS-FL) framework
based on Lagrange coded computing (LCC) to tackle both the non-IID and dropout
problems. The key idea is to utilize Lagrange coding to secretly share the
private datasets among clients so that each client receives an encoded version
of the global dataset, and the local gradient computation over this dataset is
unbiased. To correctly decode the gradient at the server, the gradient function
has to be a polynomial in a finite field, and thus we construct polynomial
integer neural networks (PINNs) to enable our framework. Theoretical analysis
shows that DReS-FL is resilient to client dropouts and provides privacy
protection for the local datasets. Furthermore, we experimentally demonstrate
that DReS-FL consistently leads to significant performance gains over baseline
methods.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Subspace based Federated Unlearning [75.90552823500633]
Federated unlearning (FL) aims to remove a specified target client's contribution in FL to satisfy the user's right to be forgotten.
Most existing federated unlearning algorithms require the server to store the history of the parameter updates.
We propose a simple-yet-effective subspace based federated unlearning method, dubbed SFU, that lets the global model perform gradient ascent.
arXiv Detail & Related papers (2023-02-24T04:29:44Z) - Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning [0.0]
Federated learning (FL) is a promising decentralized deep learning (DL) framework that enables DL-based approaches trained collaboratively across clients without sharing private data.
In this paper, we propose a novel framework, namely Personalized Privacy-Preserving Federated Learning (PPPFL)
Our proposed framework outperforms multiple FL baselines on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2023-02-22T07:24:08Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
Uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning.
This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew.
We propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client's impact factor.
arXiv Detail & Related papers (2022-08-04T04:24:16Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated learning (FL) is a privacy-promoting framework that enables clients to collaboratively train machine learning models.
A major challenge in federated learning arises when the local data is heterogeneous.
We propose FedDPMS, an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations.
arXiv Detail & Related papers (2022-06-01T18:00:48Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data.
We propose a novel federated learning algorithm with local drift decoupling and correction (FedDC)
Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters.
Experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks.
arXiv Detail & Related papers (2022-03-22T14:06:26Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.