Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning
- URL: http://arxiv.org/abs/2302.12020v1
- Date: Wed, 22 Feb 2023 07:24:08 GMT
- Title: Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning
- Authors: Van-Tuan Tran, Huy-Hieu Pham, Kok-Seng Wong
- Abstract summary: Federated learning (FL) is a promising decentralized deep learning (DL) framework that enables DL-based approaches trained collaboratively across clients without sharing private data.
In this paper, we propose a novel framework, namely Personalized Privacy-Preserving Federated Learning (PPPFL)
Our proposed framework outperforms multiple FL baselines on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is recently surging as a promising decentralized deep
learning (DL) framework that enables DL-based approaches trained
collaboratively across clients without sharing private data. However, in the
context of the central party being active and dishonest, the data of individual
clients might be perfectly reconstructed, leading to the high possibility of
sensitive information being leaked. Moreover, FL also suffers from the
nonindependent and identically distributed (non-IID) data among clients,
resulting in the degradation in the inference performance on local clients'
data. In this paper, we propose a novel framework, namely Personalized
Privacy-Preserving Federated Learning (PPPFL), with a concentration on
cross-silo FL to overcome these challenges. Specifically, we introduce a
stabilized variant of the Model-Agnostic Meta-Learning (MAML) algorithm to
collaboratively train a global initialization from clients' synthetic data
generated by Differential Private Generative Adversarial Networks (DP-GANs).
After reaching convergence, the global initialization will be locally adapted
by the clients to their private data. Through extensive experiments, we
empirically show that our proposed framework outperforms multiple FL baselines
on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.
Related papers
- Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
It's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT)
Federated learning (FL) provides a solution by enabling collaborative global model training across clients.
We propose a novel personalized FL approach, named Adversarial Federated Consensus Learning (AFedCL)
arXiv Detail & Related papers (2024-09-24T03:59:32Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Mitigating Cross-client GANs-based Attack in Federated Learning [78.06700142712353]
Multi distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model.
FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack.
We propose Fed-EDKD technique to improve the current popular FL schemes to resist C-GANs attack.
arXiv Detail & Related papers (2023-07-25T08:15:55Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - PGFed: Personalize Each Client's Global Objective for Federated Learning [7.810284483002312]
We propose a novel personalized FL framework that enables each client to personalize its own global objective.
To avoid massive (O(N2)) communication overhead and potential privacy leakage, each client's risk is estimated through a first-order approximation for other clients' adaptive risk aggregation.
Our experiments on four datasets under different federated settings show consistent improvements of PGFed over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-12-02T21:16:39Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated learning (FL) is a privacy-promoting framework that enables clients to collaboratively train machine learning models.
A major challenge in federated learning arises when the local data is heterogeneous.
We propose FedDPMS, an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations.
arXiv Detail & Related papers (2022-06-01T18:00:48Z) - FRAug: Tackling Federated Learning with Non-IID Features via
Representation Augmentation [31.12851987342467]
Federated Learning (FL) is a decentralized learning paradigm in which multiple clients collaboratively train deep learning models.
We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem.
Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets.
arXiv Detail & Related papers (2022-05-30T07:43:42Z) - Federated Noisy Client Learning [105.00756772827066]
Federated learning (FL) collaboratively aggregates a shared global model depending on multiple local clients.
Standard FL methods ignore the noisy client issue, which may harm the overall performance of the aggregated model.
We propose Federated Noisy Client Learning (Fed-NCL), which is a plug-and-play algorithm and contains two main components.
arXiv Detail & Related papers (2021-06-24T11:09:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.