論文の概要: Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision
- arxiv url: http://arxiv.org/abs/2210.02724v2
- Date: Sun, 9 Oct 2022 08:27:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-11 16:00:03.678583
- Title: Leveraging Instance Features for Label Aggregation in Programmatic Weak
Supervision
- Title(参考訳): プログラム的弱監督におけるラベルアグリゲーションのインスタンス機能活用
- Authors: Jieyu Zhang, Linxin Song, Alexander Ratner
- Abstract要約: Programmatic Weak Supervision (PWS) は、トレーニングラベルを効率的に合成するための広く普及したパラダイムとして登場した。
PWSのコアコンポーネントはラベルモデルであり、複数のノイズ管理ソースの出力をラベル関数として集約することで、真のラベルを推論する。
既存の統計ラベルモデルは一般的にLFの出力のみに依存し、基礎となる生成過程をモデル化する際のインスタンスの特徴を無視している。
- 参考スコア(独自算出の注目度): 75.1860418333995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Programmatic Weak Supervision (PWS) has emerged as a widespread paradigm to
synthesize training labels efficiently. The core component of PWS is the label
model, which infers true labels by aggregating the outputs of multiple noisy
supervision sources abstracted as labeling functions (LFs). Existing
statistical label models typically rely only on the outputs of LF, ignoring the
instance features when modeling the underlying generative process. In this
paper, we attempt to incorporate the instance features into a statistical label
model via the proposed FABLE. In particular, it is built on a mixture of
Bayesian label models, each corresponding to a global pattern of correlation,
and the coefficients of the mixture components are predicted by a Gaussian
Process classifier based on instance features. We adopt an auxiliary
variable-based variational inference algorithm to tackle the non-conjugate
issue between the Gaussian Process and Bayesian label models. Extensive
empirical comparison on eleven benchmark datasets sees FABLE achieving the
highest averaged performance across nine baselines.
- Abstract(参考訳): Programmatic Weak Supervision (PWS) はトレーニングラベルを効率的に合成するためのパラダイムとして広く普及している。
PWSのコアコンポーネントはラベルモデルであり、ラベル関数(LF)として抽象化された複数のノイズ管理ソースの出力を集約することで、真のラベルを推論する。
既存の統計ラベルモデルは通常、lfの出力のみに依存し、基礎となる生成過程をモデル化する際にインスタンスの特徴を無視する。
本稿では,提案するFABLEを用いて,インスタンスの特徴を統計的ラベルモデルに組み込もうとする。
特に、相関のグローバルパターンに対応するベイズラベルモデルの混合物の上に構築され、混合成分の係数はインスタンス特徴に基づくガウス過程分類器によって予測される。
ガウス過程とベイズラベルモデルとの非共役問題に対処するために,補助変数に基づく変分推論アルゴリズムを採用する。
11のベンチマークデータセットに対する大規模な比較では、FABLEは9つのベースラインで最高の平均パフォーマンスを達成している。
関連論文リスト
- Adaptive Collaborative Correlation Learning-based Semi-Supervised Multi-Label Feature Selection [25.195711274756334]
適応的協調相関 lEarning-based Semi-Supervised Multi-label Feature Selection (Access-MFS) 法を提案する。
具体的には、拡張された非相関制約を備えた一般化回帰モデルを導入し、識別的かつ無関係な特徴を選択する。
相関インスタンスとラベル相関を提案回帰モデルに統合し,サンプル類似度グラフとラベル類似度グラフの両方を適応的に学習する。
論文 参考訳(メタデータ) (2024-06-18T01:47:38Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Fusing Conditional Submodular GAN and Programmatic Weak Supervision [5.300742881753571]
PWS(Programmatic Weak Supervision)と生成モデルは、データ収集や手動のアノテーションプロセスに頼ることなく、既存のデータセットの有用性を最大化する重要なツールとして機能する。
PWSは、データの基礎となるクラスラベルを推定するために様々な弱い監視技術を使用し、生成モデルは、主に与えられたデータセットの基盤分布からのサンプリングに集中する。
最近、WSGANは2つのモデルを融合させるメカニズムを提案した。
論文 参考訳(メタデータ) (2023-12-16T07:49:13Z) - Deep Partial Multi-Label Learning with Graph Disambiguation [27.908565535292723]
grAph-disambIguatioN (PLAIN) を用いた新しいディープ部分多重ラベルモデルを提案する。
具体的には、ラベルの信頼性を回復するために、インスタンスレベルとラベルレベルの類似性を導入する。
各トレーニングエポックでは、ラベルがインスタンスとラベルグラフに伝播し、比較的正確な擬似ラベルを生成する。
論文 参考訳(メタデータ) (2023-05-10T04:02:08Z) - Ground Truth Inference for Weakly Supervised Entity Matching [76.6732856489872]
弱監督タスクのための単純だが強力なラベル付けモデルを提案する。
次に、エンティティマッチングのタスクに特化してラベルモデルを調整します。
その結果,従来の手法よりもF1スコアが9%高い結果が得られた。
論文 参考訳(メタデータ) (2022-11-13T17:57:07Z) - Partial sequence labeling with structured Gaussian Processes [8.239028141030621]
部分列ラベリングのための構造付きガウス過程を提案する。
予測の不確実性を符号化し、モデル選択やハイパーパラメータ学習に余分な労力を要しない。
いくつかのシーケンスラベリングタスクで評価を行い,実験結果から提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-09-20T00:56:49Z) - Active Learning by Feature Mixing [52.16150629234465]
本稿では,ALFA-Mixと呼ばれるバッチ能動学習手法を提案する。
予測の不整合を求めることにより,不整合な特徴を持つインスタンスを同定する。
これらの予測の不整合は、モデルが未認識のインスタンスで認識できない特徴を発見するのに役立ちます。
論文 参考訳(メタデータ) (2022-03-14T12:20:54Z) - AggMatch: Aggregating Pseudo Labels for Semi-Supervised Learning [25.27527138880104]
半教師付き学習は、大量のラベルのないデータを活用するための効果的なパラダイムであることが証明されている。
AggMatchは、異なる自信のあるインスタンスを使用して初期擬似ラベルを洗練する。
我々は,AggMatchの標準ベンチマークにおける最新の手法に対する有効性を示す実験を行った。
論文 参考訳(メタデータ) (2022-01-25T16:41:54Z) - Momentum Pseudo-Labeling for Semi-Supervised Speech Recognition [55.362258027878966]
本稿では,半教師付き音声認識のための簡易かつ効果的な手法として,モーメント擬似ラベル(MPL)を提案する。
MPLは、平均的な教師メソッドにインスパイアされて、相互に相互作用し、学習するオンラインとオフラインの2つのモデルで構成されている。
実験の結果,MPLはベースモデルよりも効果的に改善され,様々な半教師付きシナリオに拡張可能であることが示された。
論文 参考訳(メタデータ) (2021-06-16T16:24:55Z) - Instance-Aware Graph Convolutional Network for Multi-Label
Classification [55.131166957803345]
グラフ畳み込みニューラルネットワーク(GCN)は、マルチラベル画像認識タスクを効果的に強化した。
マルチラベル分類のための事例対応グラフ畳み込みニューラルネットワーク(IA-GCN)フレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-19T12:49:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。