Spatial-Temporal Graph Convolutional Gated Recurrent Network for Traffic
Forecasting
- URL: http://arxiv.org/abs/2210.02737v1
- Date: Thu, 6 Oct 2022 08:02:20 GMT
- Title: Spatial-Temporal Graph Convolutional Gated Recurrent Network for Traffic
Forecasting
- Authors: Le Zhao, Mingcai Chen, Yuntao Du, Haiyang Yang, Chongjun Wang
- Abstract summary: We propose a novel framework for traffic forecasting, named Spatial-Temporal Graph Convolutional Gated Recurrent Network (STGCGRN)
We design an attention module to capture long-term dependency by mining periodic information in traffic data.
Experiments on four datasets demonstrate the superior performance of our model.
- Score: 3.9761027576939414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an important part of intelligent transportation systems, traffic
forecasting has attracted tremendous attention from academia and industry.
Despite a lot of methods being proposed for traffic forecasting, it is still
difficult to model complex spatial-temporal dependency. Temporal dependency
includes short-term dependency and long-term dependency, and the latter is
often overlooked. Spatial dependency can be divided into two parts:
distance-based spatial dependency and hidden spatial dependency. To model
complex spatial-temporal dependency, we propose a novel framework for traffic
forecasting, named Spatial-Temporal Graph Convolutional Gated Recurrent Network
(STGCGRN). We design an attention module to capture long-term dependency by
mining periodic information in traffic data. We propose a Double Graph
Convolution Gated Recurrent Unit (DGCGRU) to capture spatial dependency, which
integrates graph convolutional network and GRU. The graph convolution part
models distance-based spatial dependency with the distance-based predefined
adjacency matrix and hidden spatial dependency with the self-adaptive adjacency
matrix, respectively. Specially, we employ the multi-head mechanism to capture
multiple hidden dependencies. In addition, the periodic pattern of each
prediction node may be different, which is often ignored, resulting in mutual
interference of periodic information among nodes when modeling spatial
dependency. For this, we explore the architecture of model and improve the
performance. Experiments on four datasets demonstrate the superior performance
of our model.
Related papers
- DSTCGCN: Learning Dynamic Spatial-Temporal Cross Dependencies for
Traffic Forecasting [7.3669718660909735]
We propose a dynamic spatial-temporal cross graph convolution network to learn dynamic spatial and temporal dependencies jointly.
Experiments on six real-world datasets demonstrate that DSTCGCN achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-07-02T08:53:10Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting [22.421667339552467]
Spatial-temporal forecasting has attracted tremendous attention in a wide range of applications, and traffic flow prediction is a canonical and typical example.
Existing works typically utilize shallow graph convolution networks (GNNs) and temporal extracting modules to model spatial and temporal dependencies respectively.
We propose Spatial-Temporal Graph Ordinary Differential Equation Networks (STGODE), which captures spatial-temporal dynamics through a tensor-based ordinary differential equation (ODE)
We evaluate our model on multiple real-world traffic datasets and superior performance is achieved over state-of-the-art baselines.
arXiv Detail & Related papers (2021-06-24T11:48:45Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.