論文の概要: Time Will Change Things: An Empirical Study on Dynamic Language
Understanding in Social Media Classification
- arxiv url: http://arxiv.org/abs/2210.02857v1
- Date: Thu, 6 Oct 2022 12:18:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-07 16:28:16.948719
- Title: Time Will Change Things: An Empirical Study on Dynamic Language
Understanding in Social Media Classification
- Title(参考訳): Time Will Change Things: ソーシャルメディア分類における動的言語理解に関する実証的研究
- Authors: Yuji Zhang, Jing Li
- Abstract要約: 我々は、実験的にソーシャルメディアのNLUを動的に研究し、モデルが過去のデータに基づいてトレーニングされ、将来のテストが行われる。
自動エンコーディングと擬似ラベルが協調して、動的性の最良の堅牢性を示すことを示す。
- 参考スコア(独自算出の注目度): 5.075802830306718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language features are ever-evolving in the real-world social media
environment. Many trained models in natural language understanding (NLU),
ineffective in semantic inference for unseen features, might consequently
struggle with the deteriorating performance in dynamicity. To address this
challenge, we empirically study social media NLU in a dynamic setup, where
models are trained on the past data and test on the future. It better reflects
the realistic practice compared to the commonly-adopted static setup of random
data split. To further analyze model adaption to the dynamicity, we explore the
usefulness of leveraging some unlabeled data created after a model is trained.
The performance of unsupervised domain adaption baselines based on
auto-encoding and pseudo-labeling and a joint framework coupling them both are
examined in the experiments. Substantial results on four social media tasks
imply the universally negative effects of evolving environments over
classification accuracy, while auto-encoding and pseudo-labeling
collaboratively show the best robustness in dynamicity.
- Abstract(参考訳): 現実世界のソーシャルメディア環境では、言語機能は進化し続けている。
自然言語理解(NLU)における多くの訓練されたモデルは、目に見えない特徴のセマンティック推論に効果がなく、結果として動的性能の劣化に苦しむ可能性がある。
この課題に対処するために,我々はソーシャルメディアnluを動的セットアップで経験的に研究し,モデルが過去のデータに基づいてトレーニングされ,将来のテストが行われる。
普通に採用されているランダムなデータ分割の静的セットアップよりも、現実的なプラクティスを反映している。
モデル適応を動的に解析するために,モデルが訓練された後に作成されたラベルのないデータを活用することの有用性を検討する。
自動エンコーディングと擬似ラベルに基づく教師なしドメイン適応ベースラインとそれらを結合するジョイントフレームワークの性能を実験で検討した。
4つのソーシャルメディアタスクにおける実質的な結果は、分類精度よりも進化する環境の普遍的な悪影響を示唆する一方、自動エンコーディングと擬似ラベルは、動的性の最良の堅牢性を示している。
関連論文リスト
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Evaluating the Effectiveness of Video Anomaly Detection in the Wild: Online Learning and Inference for Real-world Deployment [2.1374208474242815]
Video Anomaly Detection (VAD) は、監視から医療まで幅広い応用の鍵となる、ビデオストリームにおける異常な活動を特定する。
実生活環境でのVADに取り組むことは、人間の行動の動的な性質、環境の変化、ドメインシフトによって大きな課題となる。
オンライン学習は、モデルを新しい情報に継続的に適応させることによって、この問題を軽減するための潜在的戦略である。
論文 参考訳(メタデータ) (2024-04-29T14:47:32Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Learning Neural Models for Natural Language Processing in the Face of
Distributional Shift [10.990447273771592]
特定のデータセットでひとつのタスクを実行するための強力な神経予測器をトレーニングするNLPのパラダイムが、さまざまなアプリケーションで最先端のパフォーマンスを実現している。
データ分布が定常である、すなわち、トレーニングとテストの時間の両方で、データは固定された分布からサンプリングされる、という仮定に基づいて構築される。
この方法でのトレーニングは、人間が絶えず変化する情報の流れの中で学習し、操作できる方法と矛盾する。
データ分散がモデル寿命の経過とともにシフトすることが期待される実世界のユースケースに不適応である。
論文 参考訳(メタデータ) (2021-09-03T14:29:20Z) - LEADS: Learning Dynamical Systems that Generalize Across Environments [12.024388048406587]
我々は、モデル一般化を改善するために、既知の環境間の共通点と相違点を活用する新しいフレームワークであるLEADSを提案する。
環境に依存したデータから抽出した知識を活用でき、既知の環境と新しい環境の両方の一般化を向上できることを示す。
論文 参考訳(メタデータ) (2021-06-08T17:28:19Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Learning Reactive and Predictive Differentiable Controllers for
Switching Linear Dynamical Models [7.653542219337937]
専門家による実証から複合ダイナミクス行動を学習するためのフレームワークを提示する。
システムダイナミクスの近接近似としてスイッチング条件にエンコードされた接点を持つスイッチング線形ダイナミクスモデルを学ぶ。
次に、データ効率のよい制御学習のための微分可能なポリシークラスとして離散時間LQRを使用し、制御戦略を開発する。
論文 参考訳(メタデータ) (2021-03-26T04:40:24Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Online Learning With Adaptive Rebalancing in Nonstationary Environments [11.501721946030779]
オンライン学習における非定常データと不均衡データからの学習に関する新たな洞察を提供する。
本稿では,AREBA(Adaptive REBAlancing)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-24T20:40:04Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。