Distributed Quantum Computing with QMPI
- URL: http://arxiv.org/abs/2105.01109v1
- Date: Mon, 3 May 2021 18:30:43 GMT
- Title: Distributed Quantum Computing with QMPI
- Authors: Thomas H\"aner, Damian S. Steiger, Torsten Hoefler, Matthias Troyer
- Abstract summary: We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
- Score: 11.71212583708166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Practical applications of quantum computers require millions of physical
qubits and it will be challenging for individual quantum processors to reach
such qubit numbers. It is therefore timely to investigate the resource
requirements of quantum algorithms in a distributed setting, where multiple
quantum processors are interconnected by a coherent network. We introduce an
extension of the Message Passing Interface (MPI) to enable high-performance
implementations of distributed quantum algorithms. In turn, these
implementations can be used for testing, debugging, and resource estimation. In
addition to a prototype implementation of quantum MPI, we present a performance
model for distributed quantum computing, SENDQ. The model is inspired by the
classical LogP model, making it useful to inform algorithmic decisions when
programming distributed quantum computers. Specifically, we consider several
optimizations of two quantum algorithms for problems in physics and chemistry,
and we detail their effects on performance in the SENDQ model.
Related papers
- Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs.
This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example.
Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states.
arXiv Detail & Related papers (2024-10-09T07:23:13Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Neuron with Separable-State Encoding [0.0]
It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
arXiv Detail & Related papers (2022-02-16T19:26:23Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Distributed Quantum Computing and Network Control for Accelerated VQE [0.0]
We consider an approach for distributing the accelerated variational quantum eigensolver (AVQE) algorithm over arbitrary sized - in terms of number of qubits - distributed quantum computers.
We propose an architecture for a distributed quantum control system in the settings of centralized and decentralized network control.
arXiv Detail & Related papers (2021-01-07T11:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.